首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in vitro wear study of alumina-alumina total hip prostheses.   总被引:1,自引:0,他引:1  
Four 28 mm diameter alumina-alumina hip prostheses were tested in the Mkll Durham hip simulator for 5 x 10(6) cycles using 25 per cent bovine serum as lubricant. Wear of the heads and cups was measured gravimetrically. The mean and standard deviation of the wear rate for the alumina cups was 0.097 +/- 0.039 mm3/10(6) cycles. The femoral heads produced such low wear that it could not be measured by weighing but could be detected byincreased surface roughness measurements. Such low wear rates represent about one-five-hundredthof the wear of ultra-high molecular weight polyethylene (UHMWPE) against ceramic in a similar test and supports work which indicates that fluid film lubrication exists in these joints.  相似文献   

2.
It has been found that a remarkable reduction in the wear of metal-on-metal hip joints can be achieved by simply increasing the diameter of the joint. A tribological evaluation of metal-on-metal joints of 16, 22.225, 28 and 36 mm diameter was conducted in 25 per cent bovine serum using a hip joint simulator. The joints were subject to dynamic motion and loading cycles simulating walking for both lubrication and wear studies. For each size of joint in the lubrication study, an electrical resistivity technique was used to detect the extent of surface separation through a complete walking cycle. Wear of each size of joint was measured gravimetrically in wear tests of at least 2 x 10(6) cycles duration. Joints of 16 and 22.225 mm diameter showed no surface separation in the lubrication study. This suggested that wear would be proportional to the sliding distance and hence joint size in this boundary lubrication regime. A 28 mm diameter joint showed only limited evidence of surface separation suggesting that these joints were operating in a mixed lubrication regime. A 36 mm diameter joint showed surface separation for considerable parts of each walking cycle and hence evidence of the formation of a protective lubricating film. Wear testing of 16 and 22.225 mm diameter metal-on-metal joints gave mean wear rates of 4.85 and 6.30 mm3/10(6) cycles respectively. The ratio of these wear rates, 0.77, is approximately the same as the joint diameters ratio, 16/22.225 or 0.72, as expected from simple wear theory for dry or boundary lubrication conditions. No bedding-in was observed with these smaller diameter joints. For the 28 mm diameter joint, from 0 to 2 x 10(6) cycles, the mean wear rate was 1.62 mm3/10(6) cycles as the joints bedded-in. Following bedding-in, from 2.0 x 10(6) to 4.7 x 10(6) cycles, the wear rate was 0.54 mm3/10(6) cycles. As reported previously by Goldsmith et al. in 2000 [1], the mean steady state wear rate of the 36 mm diameter joints was lower than those of all the other diameters at 0.07 mm3/10(6) cycles. For a range of joints of various diameters, subjected to identical test conditions, mean wear rates differed by almost two orders of magnitude. This study has demonstrated that the application of sound tribological principles to prosthetic design can reduce the wear of metal-on-metal joints, using currently available materials, to a negligible level.  相似文献   

3.
New material combinations have been introduced as the bearing surfaces of hip prostheses in an attempt to prolong their life by overcoming the problems of failure due to wear-particle-induced osteolysis. This will hopefully reduce the need for revision surgery. The study detailed here used a hip simulator to assess the volumetric wear rates of large-diameter carbon-fibre-reinforced pitch-based poly(ether-ether-ketone) (CFR-PEEK) acetabular cups articulating against alumina femoral heads. The joints were tested for 25 x 10(6) cycles. Friction tests were also performed on these joints to determine the lubrication regime under which they operate. The average volumetric wear rate of the CFR-PEEK acetabular component of 54 mm diameter was 1.16 mm(3)/10(6) cycles, compared with 38.6 mm(3)/10(6) cycles for an ultra-high-molecular-weight polyethylene acetabular component of 28 mm diameter worn against a ceramic head. This extremely low wear rate was sustained over 25 x 10(6) cycles (the equivalent of up to approximately 25 years in vivo). The frictional studies showed that the joints worked under the mixed-boundary lubrication regime. The low wear produced by these joints showed that this novel joint couple offers low wear rates and therefore may be an alternative material choice for the reduction of osteolysis.  相似文献   

4.
While total hip replacement represents the major success story in orthopaedic surgery in the twentieth century, there is much interest in extending even further, early in the twenty first century, the life of implants. Osteolysis has been identified as a major factor limiting the life of prostheses, with indications that fine polyethylene wear debris, generated primarily at the interface between the femoral head and the acetabular cup, promotes the process. There is therefore considerable interest in the introduction of alternative wear resistant systems to limit the deleterious effects of wear. These alternatives include ceramic-on-ceramic and metal-on-metal configurations and the present paper is primarily concerned with the latter. Some six pairs of new metal-on-metal implants of 36 mm diameter and four pairs of existing metal-on-metal implants of 28 mm diameter were tested in a ten-station hip joint simulator in the presence of a 25 per cent bovine serum solution. The implants were tested in the anatomical position to 5 x 10(6) cycles. The new heads and cups were manufactured from CoCrMo alloy with careful attention being paid to sphericity and surface finish of both components. The wear performance of the new and existing metal-on-metal total hip replacements have been evaluated and compared. The overall wear rates have then been compared with previously reported wear rates for a zirconia-on-polyethylene prosthesis of 22 mm diameter tested on the same simulator. The comparison is taken further by recalling published penetration data for metal-on-polyethylene implants of 22 and 28 mm diameter and converting these to volumetric wear rates. It was found that the heads and cups in metal-on-metal joints wore by almost equal amounts and that the opposing surfaces converged to similar surface roughness as the testing time increased. Steady state wear rates were generally achieved after 1-2 x 10(6) cycles. The mean long-term wear rates for the metal-on-metal prostheses were very low, being 0.36 mm3/10(6) cycles and 0.45 mm3/10(6) cycles for the new implants of 36 mm diameter and established implants of 28 mm diameter respectively. These wear rates compare with 6.3 mm3/10(6) cycles for zirconia-on-ultra-high molecular weight polyethylene tested on the same simulator and representative clinical values for metal-on-polyethylene of 36 mm3/year for heads of 22 mm diameter and a reported range of 60-180 mm3/year for 28 mm heads. These values do not translate directly into numbers of particles, since the metallic debris from metal-on-metal joints is very fine. The number of metallic particles may exceed the number of polyethylene wear particles from an otherwise similar metal-on-polyethylene joint by a factor of 10(3). A detailed discussion of the size and morphology of wear debris and tissue reaction to various forms of debris is beyond the scope of this paper, but the biological response to polymeric, metallic and ceramic wear debris forms a major subject for further study. The present investigation nevertheless confirms the potential of carefully designed and manufactured metal-on-metal total replacement joints for the treatment of diseased and damaged hips.  相似文献   

5.
This study investigated changes in metal-on-metal (MOM) hip wear and wear particle characteristics arising from a more aggressive patient activity level compared with normal walking. The test hypothesis was that 'severe'-gait conditions will change wear, wear particle sizes, and morphology owing to a decline in joint lubrication. Four carbon MOM hip bearings 40 mm high were subjected to normal-walking and fast-jogging simulations in an orbital hip joint simulator with 25 per cent alpha-calf serum as a lubricant. Co-Cr-Mo wear particles were extracted using an enzymatic method, and prolate ellipsoid equations were used to estimate particle volume and surface area. Fast-jogging simulations generated a sevenfold increase in volumetric wear, a 33 per cent increase in mean wear particle size, and a threefold increase in the number of larger (needle) particles compared with walking. This resulted in a twentyfold increase in total wear particle surface area per 10(6) cycles compared with walking, thereby confirming our hypothesis. The clinical significance of this result suggests that highly active MOM patients may exhibit greater ion release than less active patients.  相似文献   

6.
A five-station hip joint wear simulator was designed and built which featured simplified motion and loading. An elliptical wear path was produced using approximately sinusoidal motion in the flexion/extension and internal/external rotation axes and the dynamic loading approximated to a square wave. Five 28 mm diameter zirconia femoral heads articulated against ultra-high molecular weight polyethylene acetabular cups in 25 per cent bovine serum for 5 x 10(6) cycles. Gravimetric wear measurement was used with moisture absorption compensation using a dynamically loaded soak control. With motion of physiological magnitude, the mean acetabular cup wear rate was 52.2 mm3/10(6) cycles which is comparable with a number of clinical studies.  相似文献   

7.
A novel 12-station hip joint simulator with an anatomic position of the prosthesis was designed and built. The motion of the simulator consists of flexion-extension and abduction-adduction. The load is of the double-peak type. The validation test was done with three similar 28 mm CoCr-polyethylene joints in diluted calf serum lubricant for 3.3 x 10(6) cycles. The bearing surfaces of the polyethylene cups were burnished, the CoCr heads were undamaged, the wear particles were in the 0.1-1 microm size range, and the mean wear factor of the polyethylene cups was 5.7 x 10(-7) mm(3)/N m. These essential observations were in good agreement with clinical findings. In addition, three similar 50 mm CoCr/CoCr joints, representing the contemporary large-diameter metal-on-metal articulation were tested. The wear of the CoCr/CoCr joints was calculated from the Co and Cr concentrations of the used lubricant quantified with atomic absorption spectroscopy. The bearing surfaces of the CoCr/CoCr joints showed mild criss-cross scratching only. The average wear factor of polyethylene cups was 275 times that of the CoCr/CoCr joints. The tribological behaviour of the large-dia. CoCr/CoCr appeared to be dominated by fluid film lubrication, as indicated by very low frictional heating and wear, making it tribologically superior to the conventional CoCr/polyethylene, and therefore very interesting clinically. In conclusion, the simulator proved to be a valid, reliable, practical, economical, and easy-to-operate tool for wear studies of various hip replacement designs.  相似文献   

8.
Polyethylene particle disease is one of the major causes of late aseptic loosening of total hip replacement. Two hard-hard articulations (alumina-on-alumina and metal-on-metal) have been developed in Europe as an alternative to the ultra-high molecular weight polyethylene (UHMWPE) articulations. Even though these hard-hard articulations are on the market and numerous reports have been published about them, only a very limited number of studies allowing a direct in vitro comparison of the two articulations have been published so far. This paper compares in vitro these two types of articulation (alumina-on-alumina and metal-on-metal), which have been tested with a hip simulator for their tribological behaviour using exactly the same experimental methodology. This comparison shows that these two types of hard-hard articulation have very similar abrasive wear behaviour with four main features: 1. A running-in wear period (1 x 10(6) cycles) gives a cumulative wear of about 20 microns with head diameters of 28 mm. 2. After the running-in wear, there is a stabilization of the linear wear behaviour with a low linear wear rate/10(6) cycles for both types of articulation. 3. The volumetric wear rate of both articulations (< 2.0 mm3/year for head diameters of 28 mm) is significantly lower than that observed for metal-on-polyethylene or ceramic-on-polyethylene articulations having the same head diameter. 4. Abrasive wear is readily apparent (indicating a mixed lubrication regime) with both types of articulation. The extremely low wear performance of these articulations is confirmed and they constitute a low-wear alternative to the UHMWPE articulations currently used.  相似文献   

9.
The wear of metal-on-metal bearings is affected by various design parameters, such as the clearance or surface roughness. It would be very useful to have a significant indicator of wear according to these design parameters, such as the lambda ratio. Three different batches of cast high- and low-carbon cobalt-chromium hip implants (28 mm, 32 mm, and 36 mm diameters) were tested in a hip joint simulator for 2 x 10(6) cycles. Bovine calf serum was used as lubricant, and the samples were weighed at regular intervals during the test. The predictive role of the lambda ratio on the wear behaviour was investigated. Three different configurations were tested to explore the wear rate for a broad range of lambda ratios. The results of these studies clearly showed that the femoral heads of 36 mm diameter had the best wear behaviour with respect to the other two smaller configurations tested. From a predictive point of view, the lambda ratios associated with the configurations tested could clearly indicate that the femoral heads of 36 mm diameter worked in the mixed-lubrication regime (lambda > 1); all the smallest configurations (28mm size) had lambda < 1, thus showing their aptitude to work in the boundary lubrication regime, with substantially higher volume depletion due to wear. The lambda values associated with the 32 mm size varied in a range around 1 (0.95 < lambda < 1.16), suggesting the possibility of operating in the mixed-lubrication regime.  相似文献   

10.
In vitro wear data for hip joint devices reported in the literature vary in a wide range from one simulator study to another sometimes for the same type of device tested under identical physiological testing conditions. We hypothesized that non-bearing surface condition of the testing components could be an important factor affecting the simulator wear results. To confirm this hypothesis, fifteen 50 mm metal-on-metal hip resurfacing devices with identical bearing specifications were tested in a ProSim hip wear simulator for 5 million cycles. The heads were standard Birmingham Hip Resurfacing (BHR) heads; whilst the pairing acetabular cups were identical to the standard BHR cup except their different back surface conditions, including: (a) off-the-shelf products after removing the hydroxyapatite (HA) coating; (b) semi-finished products without HA coating; and (c) purposely-made cups without cast-in beads and HA coating. Results showed that the different back surfaces of the cups used indeed caused significantly large variations in the gravimetrically measured wear loss. We postulated that materials loss from the non-bearing surface of the testing components could contribute to the gravimetrically measured wear loss during a wear simulator test both directly and indirectly. The results presented in this paper pertain to In vitro wear simulator study and have little clinical relevance to the performance of any implant in vivo.  相似文献   

11.
Two wear tests were conducted using the Durham Hip Joint Wear Simulator to investigate the effects of simplified motion and loading on ultra-high molecular weight polyethylene (UHMWPE) acetabular cup wear rates. Bovine serum was used as a lubricant and a gravimetric technique was used to measure wear. The first wear test duration was 7.1 x 10(6) cycles and investigated the effect of simplified loading. This was achieved by using full physiological motion and loading for the first 5 x 10(6) cycles of the test, then physiological motion with simplified loading for the final 2.1 x 10(6) cycles of the wear test. The UHMWPE acetabular cup wear rates using full physiological motion and loading were 32.2 and 51.7 mm3/10(6) cycles against zirconia and CoCrMo femoral heads respectively. Using simplified loading the cup wear rates were 30.1 and 49.2 mm3/10(6) cycles against zirconia and CoCrMo respectively which was not significantly different from wear rates with physiological loading. The effect of simplified motion was investigated in a second wear test of 5.0 x 10(6) cycles duration. Physiological loading was applied across the prosthesis with physiological motion in the flexion/extension plane only. Mean wear of the acetabular component dropped to 0.197 mm3/10(6) cycles. The surfaces of all the acetabular cups were subject to gross examination, optical microscopy and scanning electron microscopy. No notable difference was observed between the cups subjected to physiological motion and loading and those subjected to simplified loading. The cups worn with a single plane of motion had a much smaller worn area and a notable difference in surface features to the other cups. Simplifed loading is therefore an acceptable simplification in simulator testing but simplifying motion to the flexion/extension plane axis only is unacceptable.  相似文献   

12.
To study the tribological performance of metal-on-metal hip joint resurfacings, the wear performance of three pairs of Co-Cr-Mo alloy samples (pins and plates) were tested in a multidirectional pin-on-plate wear machine. An 'as-cast', a single-heat-treated, and a double-heat-treated set of specimens were tested to 3 x 10(6) cycles. The two heat treatments resulted in partial and full solution of the carbides into the matrix. An increasing trend in wear rate was found from 'as-cast' to the double-heat-treated specimens. The as-cast specimens showed the lowest wear rate (1.69 x 10(-6) mm3/N m), the reduced carbide samples had the next lowest wear rate (2.1 x 10(-6) mm3/N m), while the specimens without carbides wore the most (2.41 x 10(-6) mm3/N m).  相似文献   

13.
Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements   总被引:4,自引:0,他引:4  
With the increased clinical interest in metal-on-metal and ceramic-on-ceramic total-hip replacements (THRs), the objective of this hip simulator study was to identify the relative wear ranking of three bearing systems, namely CoCr-polyethylene (M-PE), CoCr-CoCr (M-M) and ceramic-on-ceramic (C-C). Volumetric wear rates were used as the method of comparison. The seven THR groupings included one M-PE study, two M-M studies and four C-C studies. Special emphasis was given to defining the 'run-in' phase of accelerated wear that rigid-on-rigid bearings generally exhibit. The hypothesis was that characterization of the run-in and steady state wear phases would clarify not only the tribological performance in vitro but also help correlate these in vitro wear rates with the 'average' wear rates measured on retrieved implants. The implant systems were studied on multichannel hip simulators using the Paul gait cycle and bovine serum as the lubricant. With 28 mm CoCr heads, the PE (2.5 Mrad/N2) wear rates averaged 13 mm3/10(6) cycles duration. This was considered a low value compared with the clinical model of 74 mm3/year (for 28 mm heads). Our later studies established that this low laboratory value was a consequence of the serum parameters then in use. The mating CoCr heads (with PE cups) wore at the steady state rate of 0.028 mm3/10(6) cycles. The concurrently run Metasul M-M THRs wore at the steady state rate of 0.119 mm3/10(6) cycles with high-protein serum. In the second Metasul M-M study with low-protein serum, the THR run-in rate was 2.681 mm3/10(6) cycles and steady state was 0.977 mm3/10(6) cycles. At 10 years, these data would predict a 70-fold reduction in M-M wear debris compared with the clinical PE wear model. All M-M implants exhibited biphasic wear trends, with the transition point at 0.5 x 10(6) cycles between run-in and steady state phases, the latter averaging a 3-fold decrease in wear rate. White surface coatings on implants (coming from the serum solution) were a confounding factor but did not obscure the two orders of magnitude wear performance improvement for CoCr over PE cups. The liners in the alumina head-alumina cup combination wore at the steady state rate of 0.004 mm3/10(6) cycles over 14 x 10(6) cycles duration (high-protein serum). The zirconia head-alumina cup THR combination wore at 0.174 and 0.014 mm3/10(6) cycles for run-in and steady state rates respectively (low-protein serum). The zirconia head and cup THR combination wore slightly higher initially with 0.342 and 0.013 mm3/10(6) cycles for run-in and steady state rates respectively. Other wear studies have generally predicted catastrophic wear for such zirconia-ceramic combinations. It was noted that the zirconia wear trends were frequently masked by the effects of tenacious white surface coatings. It was possible that these coatings protected the zirconia surfaces somewhat in this simulator study. The experimental ceramic Crystaloy THR had the highest ceramic run-in wear at 0.681 mm3/10(6) cycles and typical 0.016 mm3/10(6) cycles for steady state. Since these implants represented the first Crystaloy THR sets made, it was likely that the surface conditions of this high-strength ceramic could be improved in the future. Overall, the ceramic THRs demonstrated three orders of magnitude wear performance improvement over PE cups. With zirconia implants, while the cup wear was sometimes measurable, head wear was seldom discernible. Therefore, we have to be cautious in interpreting such zirconia wear data. Identifying the run-in and steady state wear rates was a valuable step in processing the ceramic wear data and assessing its reliability. Thus, the M-M and C-C THRs have demonstrated two to three orders of reduction in volumetric wear in the laboratory compared with the PE wear standard, which helps to explain the excellent wear performance and minimal osteolysis seen with such implants at retrieval operations.  相似文献   

14.
There is now considerable interest in metal-on-metal bearings for hip prostheses. Extremely low wear rates (0.1 mm3/10(6) cycles) have been reported in some simulator studies, while in vivo studies, although still very low, have shown wear rates of the order of 1 mm3/10(6) cycles. The aim of this study was to compare wear rates of metal-on-metal bearings in two hip simulators with different kinematic inputs. In the simulator with three independent input motions which produced an open elliptical wear path with a low level of eccentricity, the wear rates were very low as recorded previously in other simulators. In the simulator with two input motions which produced an open elliptical wear path with greater eccentricity the wear rate was at least ten times higher and closer to clinical values. The motion and kinematic conditions in the contact are critical determinants of wear in metal-on-metal bearings.  相似文献   

15.
The performance of two knee simulators designed by ProSim (Manchester, UK) was evaluated by comparison of the wear seen in the press-fit condylar (PFC) Sigma (DePuy) knee prosthesis. Twelve specimens of the same design and manufacturing specification, were subjected to a wear test of 2 x 10(6) cycles duration using bovine serum as a lubricant. The anterior/posterior displacement and internal/external rotation inputs were based on the kinematics of the natural knee. International Standards Organization (ISO) standards were used for the flexion and axial load. The wear rates and wear scar areas were compared across all stations. The mean wear rates found were 17.6+/-5 mm3/10(6) cycles for stations 1 to 6 and 19.6+/-4 mm3/10(6) cycles for stations 7 to 12, resulting in an overall mean wear rate of 18.1+/-3 mm3/10(6) cycles. The differences between the two simulators were not significant. The average wear scar area seen on inserts from stations I to 6 was calculated at 32.4+/-1 per cent of the intended articulating surface. Similarly on stations 7 to 12 the average wear scar area was 30.7+/-3 per cent. The wear scars seen were a good physiological representation of those found from clinical explant data. This study has shown good repeatability from the simulator, both within and between the simulators.  相似文献   

16.
Wear of total knee replacements is determined gravimetrically in simulator studies. A mix of bovine serum, distilled water, and additives is intended to replicate the lubrication conditions in vivo. Weight gain due to fluid absorption during testing is corrected using a load soak station. In this study, three sets of ultrahigh molecular weight polyethylene tibial plateau were tested against highly polished titanium condyles. Test 1 was performed in two different institutions on the same simulator according to the standard ISO 14243-1, using two testing lubricants. Test 2 and test 3 repeated both previous test sections. The wear and load soak rates changed significantly with the lubricant. The wear rate decreased from 16.9 to 7.9 mg weight loss per million cycles when switching from fluid A to fluid B. The weight gain of the load soak specimen submersed in fluid A was 6.1 mg after 5 x 10(6) cycles, compared with 31.6 mg for the implant in fluid B after the same time period. Both lubricants were mixed in accordance with ISO 14243 (Implants for surgery - wear of total knee-joint prostheses), suggesting that calf serum should be diluted to 25 +/- 2 per cent with deionized water and a protein mass concentration of not less than 17 g/l. The main differences were the type and amount of additives that chemically stabilize the lubricant throughout the test. The results suggest that wear rates can only be compared if exactly the same testing conditions are applied. An agreement on detailed lubricant specifications is desirable.  相似文献   

17.
Clinically, malposition of the acetabular cup in large-diameter metal-on-metal prosthetic hip designs is associated with high wear, adverse reaction to metal debris and early failure. A steep angle of the cup (>60°) may lead to poor tribological performance. Large-diameter CoCr-on-CoCr prostheses were run in the HUT-4 hip joint simulator so that a steep angle was included. With a correct position, the tribological behaviour was excellent, the wear rate being 0.1 mm3/106 cycles. In the steepest position, lubrication failed and the wear rate was two orders of magnitude higher. This study stresses the importance of rigorous pre-clinical testing.  相似文献   

18.
The effect of geometry change of the bearing surfaces owing to wear on the elastohydrodynamic lubrication (EHL) of metal-on-metal (MOM) hip bearings has been investigated theoretically in the present study. A particular MOM Metasul bearing (Zimmer GmbH) was considered, and was tested in a hip simulator using diluted bovine serum. The geometry of the worn bearing surface was measured using a coordinate measuring machine (CMM) and was modelled theoretically on the assumption of spherical geometries determined from the maximum linear wear depth and the angle of the worn region. Both the CMM measurement and the theoretical calculation were directly incorporated into the elastohydrodynamic lubrication analysis. It was found that the geometry of the original machined bearing surfaces, particularly of the femoral head with its out-of-roundness, could lead to a large reduction in the predicted lubricant film thickness and an increase in pressure. However, these non-spherical deviations can be expected to be smoothed out quickly during the initial running-in period. For a given worn bearing surface, the predicted lubricant film thickness and pressure distribution, based on CMM measurement, were found to be in good overall agreement with those obtained with the theoretical model based on the maximum linear wear depth and the angle of the worn region. The gradual increase in linear wear during the running-in period resulted in an improvement in the conformity and consequently an increase in the predicted lubricant film thickness and a decrease in the pressure. For the Metasul bearing tested in an AMTI hip simulator, a maximum total linear wear depth of approximately 13 microm was measured after 1 million cycles and remained unchanged up to 5 million cycles. This resulted in a threefold increase in the predicted average lubricant film thickness. Consequently, it was possible for the Metasul bearing to achieve a fluid film lubrication regime during this period, and this was consistent with the minimal wear observed between 1 and 5 million cycles. However, under adverse in vivo conditions associated with start-up and stopping and depleted lubrication, wear of the bearing surfaces can still occur. An increase in the wear depth beyond a certain limit was shown to lead to the constriction of the lubricant film around the edge of the contact conjunction and consequently to a decrease in the lubricant film thickness. Continuous cycles of a running-in wear period followed by a steady state wear period may be inevitable in MOM hip implants. This highlights the importance of minimizing the wear in these devices during the initial running-in period, particularly from design and manufacturing points of view.  相似文献   

19.
There is considerable interest in the wear of polyethylene and the resulting wear-debris-induced osteolysis in artificial hip joints. Proteins play an important role as boundary lubricants in vivo in the pseudosynovial fluid, and these are reproduced in in vitro tests through the use of bovine serum. Little is known, however, about the effect of phospholipid concentrations within proteinaceous solutions on the wear of ultra-high molecular weight polyethylene (UHMWPE). The effects of protein-containing lubricants with 0.05, 0.5 and 5 per cent (w/v) phosphatidyl choline concentrations on the wear of ultra-high molecular weight polyethylene (UHMWPE) were compared with 25 per cent (v/v) bovine serum which had 0.01 per cent (w/v) lipid; the effects were compared in a hip joint simulator with smooth (n = 4) and scratched (n = 3) femoral heads. The control bovine serum lubricant produced UHWMPE wear of 55 and 115 mm3/10(6) cycles on the smooth and rough heads respectively. The increased phospholipid concentration significantly reduced the wear rate. At the higher concentration (5% w/v phosphatidyl choline) the average wear was reduced to less than 2 mm3/10(6) cycles. Even with the relatively low concentrations of 0.05% w/v phosphatidyl choline the wear was reduced by at least threefold compared with the bovine serum tests for both the smooth and rough femoral heads. There may be considerable differences in the phospholipid concentrations in patients' synovial fluid and this is highly likely to produce considerable variation in wear rates. In vitro, differences in the phospholipid concentration of lubricants may also cause variation in wear rates between different simulator tests.  相似文献   

20.
The wear and creep characteristics of highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) articulating against large-diameter (36mm) ceramic and cobalt chrome femoral heads have been investigated in a physiological anatomical hip joint simulator for 10 million cycles. The crosslinked UHMWPE/ceramic combination showed higher volume deformation due to creep plus wear during the first 2 million cycles, and a steady-state wear rate 40 per cent lower than that of the crosslinked UHMWPE/cobalt chrome combination. Wear particles were isolated and characterized from the hip simulator lubricants. The wear particles were similar in size and morphology for both head materials. The particle isolation methodology used could not detect a statistically significant difference between the particles produced by the cobalt chrome and alumina ceramic femoral heads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号