首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
This paper analyses a model for the production of bioethanol that has been calibrated against laboratory data by previous researchers. The authors investigate the improvement in productivity that can be obtained when a centrifuge is used to recycle cells that would otherwise leave the reactor system in the efficient stream. The authors compare the performance of a double reactor cascade, possible employing a settling unit, against that of a single reactor. For the former case, this paper considers the reactor configuration in which the settling unit recycles from the effluent stream of a reactor back in the influent of the same reactor.  相似文献   

2.
A series of 1/5 scale reactor flow model tests have been conducted in order to determine the hydraulic characteristics of the APR+ (advanced power reactor plus). The objective of test was to determine the core inlet flow field of the model reactor in order to provide input information required by the open core thermal margin analysis code such as TORC. In this study, in order to examine the validity of the results of reactor flow model tests and the applicability of CFD (computational fluid dynamics) in the simulation of reactor internal flow, CFD simulation was conducted with the commercial multi-purpose CFD software, ANSYSCFX V. 14. It was found that the velocity field in the downcomer had the inhomogeneous feature. Relative high velocity region was located in the core region. This result was different from measurement and this difference may result from the fact that some internal structures were not modeled with the real geometry but treated as the porous domain.  相似文献   

3.
This paper focuses on a comparison of experimental and numerical investigations performed on a low-pressure mid-loaded turbine blade at operating conditions comprised of a wide range of Mach numbers(from 0.5-1.1),Reynolds numbers(from 0.4e+5-3.0e+5),flow incidence(-15-15 degrees) and three levels of free-stream turbulence intensities(2,5 and 10%).The experimental part of the work was performed in a high-speed linear cascade wind tunnel.The increased levels of turbulence were achieved by a passive grid placed at the cascade inlet.A two-dimensional flow field at the center of the blade was traversed pitch-wise upstream and downstream the cascade by means of a five-hole probe and a needle pressure probe,respectively.The blade loading was measured using the surface pressure taps evenly deployed at the blade mid-span along the suction and the pressure side.The inlet turbulence was investigated using the constant temperature anemometer technique with a dual sensor probe.Experimentally evaluated values of turbulent kinetic energy and its dissipation rate were then used as inputs for the numerical simulations.An in-house code based on a system of the Favre-averaged Navier-Stokes equation closed by a two-equation k-turbulence model was adopted for the predictions.The code utilizes an algebraic model of bypass transition valid both for attached as for separated flows taking in account the effect of free-stream turbulence and pressure gradient.The resulting comparison was carried out in terms of the kinetic energy loss coefficient,distributions of downstream wakes and blade velocity.Additionally a flow visualization was performed by means of the Schlieren technique in order to provide a further understanding of the studied phenomena.A few selected cases with a particular interest in the attached and separated flow transition are compared and discussed.  相似文献   

4.
The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far above the bottom. Hydraulic mixing is essential in a solid-liquid two-phase flow process, in which large solid particles can be found at the initial stage and turn to being high-concentration viscous liquid (non-Newtonian fluid). A 0.75 m3 digester was taken as a case study with CFD (computational fluid dynamics) software. The basic pattern was simulated by using water as the medium and the pattern of pseudo plastic fluid state was simulated by the Euler-Euler Model, then the effect of optimized design with bottom inflow and high dispersed outlets could be verified. Viewed from the mixing effects, the velocity of 0.6 m/s is better than l m/s for water medium, while 1 m/s better than 0.6 m/s for pseudo plastic fluid medium.  相似文献   

5.
A model to predict the double leakage and tip leakage leading edge spillage flows was developed.This model was combined by a TLV trajectory model and a TLV diameter model and formed as a function of compressor one-dimensional design parameters,i.e.the compressor massflow coefficient,Ф and compressor loading coefficient,ψ,and some critical blade geometrical parameters,i.e.blade solidity,σ,stagger angle,βS,blade chord length,C,and blade pitch length,S.By using this model,the double leakage and tip leakage leading edge spillage flow could be predicted even at the compressor preliminary design process.Considering the leading edge spillage flow usually indicates the inception of spike-type stall,i.e.the compressor is a tip critical design,this model could also be used as a tool to choose the critical design parameters for designers.At last,some experimental data from literature was used to validate the model and the results proved that the model was reliable.  相似文献   

6.
The use of CO2-free energy sources for running SOEC (solid-oxide electrolysis cell) technologies has a great potential to reduce the carbon dioxide emissions compared to fossil fuel based technologies for hydrogen production. The operation of the electrolysis cell at higher temperature offers the benefit of increasing the efficiency of the process. The range of the operating temperature of the SOEC is typically between 800 ~C and 1,000 ~C. Main sources of degradation that affect the SOEC stack lifetime is related to the high operating temperature. To increase the electrolyser durability, one possible solution is to decrease the operating temperature down to 650 ~C, which represents the typical operating range of the ITSE (intermediate temperature steam electrolysis). This paper is related to the work of the JU-FCH project ADEL, which investigates different carbon-free energy sources with respect to potential coupling schemes to ITSE. A predominant focus of the analysis is put on solar concentrating energy systems (solar tower) and nuclear energy as energy sources to provide the required electricity and heat for the ITSE. This study will present an overview of the main considerations, the boundary conditions and the results concerning the development of coupling schemes of the energy conversion technologies to the electrolyser.  相似文献   

7.
A numerical study has been carried out to investigate the temperature distribution and the natural convection heat transfer in axisymmetric two-dimensional vertical saturated porous cylinder with steady state laminar flow. A comparison between two situations is done under the effect of MHD (magnetohydrodynamics) and radiation. In the two situations, the vertical walls of the cylinder are cooled with constant wall temperature and a constant heat generation subjected along the centerline of the cylinder. The first case for cylinder with insulated upper surface and cooled bottom surface while the second case for cylinder with cooled upper surface and insulated bottom surface. The governing equations used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected the system are Rayleigh number ranging within (102≤ Ra ≤104), radiation parameter (0≤ Rd ≤ 2) and magnetohydrodynamics MHD (Mn) (0 ≤ Mn≤ 2).The results show that the temperature of Case 1 is more than that in Case 2 at constant Ra, Mn and Rd while the value of the stream in Case 2 is greater than that in Case 1. Nu increase with the increase of Rd and increasing Mn caused the temperature to increase and the streamline dropped while Nu decreased. A correlation has been set up to give the average Nusselt number variation with Ra, Rd and Mn for which the results are found to be in good agreement with previously published researches.  相似文献   

8.
Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow trends, particularly the Gortler vortices formation and development. Gortler vortices have the shape of mushroom-like vortices regularly spaced at 25 mm. These vortices grow and increase in strength more rapidly along the surface in the case of the same grid of turbulence applied to the measuring section. The curvature radius of the studied blade is 0.5 m and the stream turbulence intensity level is 2.6%. The velocity field is measured by hot wire anemometer in the streamwise direction. The velocity profile is found to be highly distorted by the momentum transfer associated with Gortler vortices. The results are compared to Blasius flow and to literature data for a blade with curvature radius equal to 2 m.  相似文献   

9.
The international standard IEC 61400-12-1 Wind turbines--Part 12-1: Power performance measurements of electricity producing wind turbines" aims to provide a uniform methodology that will ensure consistency, accuracy and reproducibility in the measurement and analysis of power performance by wind turbines. Annex G of this standard provides a methodology for the appropriate arrangement of instruments on the meteorological mast to ensure accurate measurement. For cup anemometers it provides recommendations about their location relative to the mast so that the effect of mast and boom interference on their output may be minimised. These recommendations are given for both tubular masts and lattice masts. This paper compares the flow distortion predicted by the IEC standard and the results of a 3D CFD (computational fluid dynamics) simulation of a triangular lattice mast. Based on the results of wind tunnel and CFD simulation it was found that the flow distortion surrounding the lattice mast was overpredicted by the method suggested in appendix G oflEC61400-12-1. Using the CFD data it was possible to determine, for a range of flow directions and mast heights, the distance from the mast that anemometers would need to be in order to be outside the flow distortion field.  相似文献   

10.
This study is concerned with the numerical simulation of the flow through an open type cross-flow runner of a nano-hydraulic turbine driven by rapid and shallow stream. It employs the two-dimensional particle method, which was used for the flow simulation of a small-scale hydraulic turbine of impulse-type in the prior study. The tip speed ratio 2, defined as the ratio of the runner tip speed to the water stream velocity upstream of the runner, ranges from 0.1 to 0.8. The simulated flow at 2 = 0.5 is confirmed to agree well with the experimentally visualized one. The effect of 2 on the flows inside the rotating cascade as well as around the runner is clarified. The turbine performance, calculated by using the simulated flow, is also highlighted to agree almost with the measurement. These demonstrate that the present simulation method is indeed applicable to the development of open type cross-flow runner of nano-hydraulic turbine utilizing rapid and shallow stream.  相似文献   

11.
A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.  相似文献   

12.
This paper presents a real-time power flow controller for VSIs (voltage source inverters) interfaced to low voltage microgrids. The proposed controller is modular, flexible, intelligent, inexpensive, portable, adaptive and designed to positively contribute in low voltage microgrids in which the lines R/X ratio is greater than the transmission lines. Therefore, the proposed control strategy is developed for operation in distribution lines. The controller strategy is different from the conventional grid-connected inverters which are designed based on transmission line characteristics. This controller, using a Texas Instrument general purpose DSP (digital signal processor), is programmed and tuned using MATLAB/SIMULINK in order to enhance self-healing, reliability and stability of the grid. This general purpose controller makes proper decisions using its local measurements as the primary source of data. The controller has the capability of communicating with the adjacent controllers and sharing the information if/when needed. The power flow output of the inverter is tested for both islanded and grid-connected modes of operation. The inverter positively contributes to active and reactive power supply while operating in grid-connected mode. The proposed control method has been implemented on a Texas Instrument DSC (digital signal controller) chip and tested on a hardware test bench at the Alternative Energy Laboratory at WVU1T (West Virginia University Institute of Technology). The system's experimental results veri~ the validity and efficiency of the proposed controller.  相似文献   

13.
The paper presents selected experience of the authors resulting from the optimization tests of double-regulated water turbines. Among the methods for measuring the discharge through the turbine used in such tests, particular attention was paid to index methods allowing to measure the relative discharge through the turbine-the index current meter method and the methods based on measuring the differential pressure between two points properly located at the turbine flow system (i.e., Winter-Kennedy method). These methods contribute to effective reduction of the cost of optimizing the turbine that is extremely important for small hydropower plants regarding installed capacity. The paper presents selected examples of the optimization tests and experiences that arise from these tests.  相似文献   

14.
A numerical study has been carried out to investigate heat transfer by free convection under the effect of MHD (magnetohydrodynamic) for steady state three-dimensional laminar flow in horizontal and vertical cylindrical annulus filled with saturated porous media (sand silica) with fins attached to the inner cylinder. A single electric coil placed around the inner cylinder to generate a magnetic field. The governing equations which used are continuity, momentum (using Darcy's law) and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using Fortran 90 program. The parameters affected on the system are Rayleigh number ranging within (102 ~ Ra* 〈 104), and MHD (Mn) (0 〈_ Mn 〈_ 100) and radius ratio Rr (0.225, 0.338 and 0.435). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that heat transfer decrease with the increase of magnetohydrodynamic. It was found that the average Nusselt number increase with Ra* and decrease with H~ Mn and Rr. A correlation for the average Nusselt number in terms of Ra* and Mn, has been developed for the inner cylinder.  相似文献   

15.
The present study demonstrates the comparison of erosion rate of critical pipeline parts, namely elbow and T-junction which face the maximum erosion in a pipeline and may cause an early damage and failure of the system. CFD (computational fluid dynamics) with an Eulerian-Lagrangian approach coupled with an approved erosion model is applied to visualize the 3-D flow behavior of slurry flow in both parts and to predict the erosion rate and the location of erosion at the internal surfaces. The analysis of slurry erosion is performed in five steps; geometry and grid generation, grid study/refinement, fluid flow solution, solid particles tracking and finally, the erosion calculation. In previous publications in literature considering transportation of gas-solid flows in pipe parts, the application ofT-junctions instead of elbows for specified conditions in order to reduce the erosion is recommended. In this article, it is approved that for liquid-solid flows, the Stokes number is reasonably smaller than the values for gas-solid flows. This causes the solid particles tightly couple to the fluid phase and to travel more closely with the fluid streamlines. The effects of important influencing parameters such as feed flow velocity, solid concentration, particle size and shape are investigated in detail in current work. It was found that for liquid-solid flows, the erosion of T-junction for all of the mentioned influencing parameters, due to its geometrical specifications and Stokes number variation in comparison with gas-solid flows, is reasonably higher than erosion of elbow. Due to these findings, in contrary to the gas-solid mixture flows, application of T-junction instead of elbow for liquid-solid flow transportation is not recommended.  相似文献   

16.
The effect of friction factor on the unsteady state mixed convective-radiative heat transfer in an inclined cylindrical annulus is investigated from continuity, momentum and energy equations. The outer cylinder is kept at a constant temperature while the inner cylinder is heated with constant heat flux. The governing equations are normalized and solved using the vorticity-stream function and the BFC (body fitted coordinates) methods. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. A computer program (Fortran 90) was built to calculate Nusselt number (Nu) and friction factorffor unsteady state condition for fluid Prandtl number fixed at (Pr = 0.7) (for air as working fluid) with radius ratio (/~ = 2.6), Rayleigh number (0 〈 Ra 〈 103), Reynolds number (50 〈 Re 〈 2,000), conduction-radiation parameter (0 〈 N 〈 10), optical thickness (0 〈 l" 〈 10) and different annulus inclination with horizontal plane (0~ _〈 d 〈 90~) for concentric cylindrical annulus. For the range of parameters considered, results show that radiation enhance heat transfer. It is also indicated in the results that as 3 increasefwill be decrease and also when Re increasefwill be decrease for any value of Ra causing increase in heat transfer. The maximum value off can be recognized at ~ = 90~ and the minimum value at 6 = 0~ for low Re. There is an optimum value of annulus inclination that gives maximum value of Nu, this maximum value appears at 90~ of annulus inclination comparison of the result with the previous work shows a good agreement.  相似文献   

17.
18.
In this paper, the fictitious domain (FD) method and the sharp interface (SI) method are combined for the direct numerical simulations of particulate flows with heat transfer in three dimensions. The flow field and the motion of particles are solved with the FD method. The temperature field is solved in both fluid and solid media with the SI method. The accuracy of the proposed FD/SI method is validated via two problems: the natural convection in a two- dimensional cavity with fixed solid particles, and the flow over a cold sphere. The method is then applied to the natural convection in a three dimensional cavity with a fixed sphere, the motion of a spherical particle in a non-isothermal fluid, and the rising of spherical catalyst particles in an enclosure. The effects of the thermal conductivity ratio are examined in the first and third problems, respectively, and the significant effects of the thermal expansion coefficient ratio on the particle motion are demonstrated in the second problem.  相似文献   

19.
在节能、环保和经济的全面推动下,商用车柴油机技术得到迅速发展.这对润滑油的性能产生深远影响,对柴油机油质量等级的选用提出挑战。本文详细阐述了不同柴油机技术及其采用对润滑油性能要求。介绍了国内不同排放阶段商用车技术路线,总结了国内商用车柴油机用油现状,为了合理、有效利用柴油机油,给出了适合采用不同技术国内商用车用柴油机油质量等级。  相似文献   

20.
The purpose of given article-consideration of the basic features of modern manufacturing of nuclear fuel which would confirm fact, that the manufacturer does everything that its production would respond not only to requirements of the consumer, but also to its expected inquiries, and would correspond to intended purposes of fuel. It was defined main tendencies and features of modern technology, especially in nuclear fuel production, on base of meeting discussions, themes of journal articles on nuclear subject. They are correspond with practice of JSC NCCP (Novosibirsk Chemical Concentrates Plant) and listed in the paper. In result of it number of base features of any advanced technology, not only nuclear, described here with examples from NCCP's practice. Of course, there is no certain list of all attributes of modern manufacturing as there is no limit to its perfection. These categories are forming by current needs of the market, but listed ones must be.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号