首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different formal learning models address different aspects of human learning. Below we compare Gold-style learning—modelling learning as a limiting process in which the learner may change its mind arbitrarily often before converging to a correct hypothesis—to learning via queries—modelling learning as a one-shot process in which the learner is required to identify the target concept with just one hypothesis. In the Gold-style model considered below, the information presented to the learner consists of positive examples for the target concept, whereas in query learning, the learner may pose a certain kind of queries about the target concept, which will be answered correctly by an oracle (called teacher). Although these two approaches seem rather unrelated at first glance, we provide characterisations of different models of Gold-style learning (learning in the limit, conservative inference, and behaviourally correct learning) in terms of query learning. Thus we describe the circumstances which are necessary to replace limit learners by equally powerful one-shot learners. Our results are valid in the general context of learning indexable classes of recursive languages. This analysis leads to an important observation, namely that there is a natural query learning type hierarchically in-between Gold-style learning in the limit and behaviourally correct learning. Astonishingly, this query learning type can then again be characterised in terms of Gold-style inference.  相似文献   

2.
The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin's notion of finite thickness and Wright's work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara's notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let ω be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m>0, the class of languages defined by formal systems of length ⩽m:
  • •is identifiable in the limit from positive data with a mind change bound of ωm;
  • •is identifiable in the limit from both positive and negative data with an ordinal mind change bound of ω×m.
The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro's linear programs, Arimura and Shinohara's depth-bounded linearly covering programs, and Krishna Rao's depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.  相似文献   

3.
This paper provides a beginning study of the effects on inductive inference of paradigm shifts whose absence is approximately modeled by various formal approaches to forbidding large changes in the size of programs conjectured. One approach, calledseverely parsimonious, requires all the programs conjectured on the way to success to be nearly (i.e., within a recursive function of) minimal size. It is shown that this very conservative constraint allows learning infinite classes of functions, butnotinfinite r.e. classes of functions. Another approach, callednon-revolutionary, requires all conjectures to be nearly the same size as one another. This quite conservative constraint is, nonetheless, shown to permit learning some infinite r.e. classes of functions. Allowing up to one extrabounded sizemind change towards a final program learned certainly does not appear revolutionary. However, somewhat surprisingly for scientific (inductive) inference, it is shown that there are classes learnablewiththe non-revolutionary constraint (respectively, with severe parsimony), up to (i+1) mind changes, and no anomalies, which classes cannotbe learned with no size constraint, an unbounded, finite number of anomalies in the final program, but with no more thanimind changes. Hence, in some cases, the possibility of one extra mind change is considerably more liberating than removal of very conservative size shift constraints. The proofs of these results are also combinatorially interesting.  相似文献   

4.
This work extends studies of Angluin, Lange and Zeugmann on the dependence of learning on the hypothesis space chosen for the language class in the case of learning uniformly recursive language classes. The concepts of class-comprising (where the learner can choose a uniformly recursively enumerable superclass as the hypothesis space) and class-preserving (where the learner has to choose a uniformly recursively enumerable hypothesis space of the same class) are formulated in their study. In subsequent investigations, uniformly recursively enumerable hypothesis spaces have been considered. In the present work, we extend the above works by considering the question of whether learners can be effectively synthesized from a given hypothesis space in the context of learning uniformly recursively enumerable language classes. In our study, we introduce the concepts of prescribed learning (where there must be a learner for every uniformly recursively enumerable hypothesis space of the same class) and uniform learning (like prescribed, but the learner has to be synthesized effectively from an index of the hypothesis space). It is shown that while for explanatory learning, these four types of learnability coincide, some or all are different for other learning criteria. For example, for conservative learning, all four types are different. Several results are obtained for vacillatory and behaviourally correct learning; three of the four types can be separated, however the relation between prescribed and uniform learning remains open. It is also shown that every (not necessarily uniformly recursively enumerable) behaviourally correct learnable class has a prudent learner, that is, a learner using a hypothesis space such that the learner learns every set in the hypothesis space. Moreover the prudent learner can be effectively built from any learner for the class.  相似文献   

5.
In this paper we study diagonal processes over time bounded computations of one-tape Turing machines by diagonalizing only over those machines for which there exist formal proofs that they operate in the given time bound. This replaces the traditional “clock” in resource bounded diagonalization by formal proofs about running times and establishes close relations between properties of proof systems and existence of sharp time bounds for one-tape Turing machine complexity classes. These diagonalization methods also show that the Gap Theorem for resource bounded computations can hold only for those complexity classes which differ from the corresponding provable complexity classes. Furthermore, we show that there exist recursive time bounds T(n) such that the class of languages for which we can formally prove the existence of Turing machines which accept them in time T(n) differs from the class of languages accepted by Turing machines for which we can prove formally that they run in time T(n). We also investigate the corresponding problems for tape bound computations and discuss the difference time and tapebounded computations.  相似文献   

6.
This paper proposes the use of constructive ordinals as mistake bounds in the on-line learning model. This approach elegantly generalizes the applicability of the on-line mistake bound model to learnability analysis of very expressive concept classes like pattern languages, unions of pattern languages, elementary formal systems, and minimal models of logic programs. The main result in the paper shows that the topological property of effective finite bounded thickness is a sufficient condition for on-line learnability with a certain ordinal mistake bound. An interesting characterization of the on-line learning model is shown in terms of the identification in the limit framework. It is established that the classes of languages learnable in the on-line model with a mistake bound of α are exactly the same as the classes of languages learnable in the limit from both positive and negative data by a Popperian, consistent learner with a mind change bound of α. This result nicely builds a bridge between the two models.  相似文献   

7.
The approach of ordinal mind change complexity, introduced by Freivalds and Smith, uses (notations for) constructive ordinals to bound the number of mind changes made by a learning machine. This approach provides a measure of the extent to which a learning machine has to keep revising its estimate of the number of mind changes it will make before converging to a correct hypothesis for languages in the class being learned. Recently, this notion, which also yields a measure for the difficulty of learning a class of languages, has been used to analyze the learnability of rich concept classes.

The present paper further investigates the utility of ordinal mind change complexity. It is shown that for identification from both positive and negative data and n 1, the ordinal mind change complexity of the class of languages formed by unions of up to n + 1 pattern languages is only ω ×0 notn(n) (where notn(n) is a notation for n, ω is a notation for the least limit ordinal and ×0 represents ordinal multiplication). This result nicely extends an observation of Lange and Zeugmann that pattern languages can be identified from both positive and negative data with 0 mind changes.

Existence of an ordinal mind change bound for a class of learnable languages can be seen as an indication of its learning “tractability”. Conditions are investigated under which a class has an ordinal mind change bound for identification from positive data. It is shown that an indexed family of languages has an ordinal mind change bound if it has finite elasticity and can be identified by a conservative machine. It is also shown that the requirement of conservative identification can be sacrificed for the purely topological requirement ofM-finite thickness. Interaction between identification by monotonic strategies and existence of ordinal mind change bound is also investigated.  相似文献   


8.
Statistical relational learning (SRL) is a subarea in machine learning which addresses the problem of performing statistical inference on data that is correlated and not independently and identically distributed (i.i.d.)—as is generally assumed. For the traditional i.i.d. setting, distribution-free bounds exist, such as the Hoeffding bound, which are used to provide confidence bounds on the generalization error of a classification algorithm given its hold-out error on a sample size of N. Bounds of this form are currently not present for the type of interactions that are considered in the data by relational classification algorithms. In this paper, we extend the Hoeffding bounds to the relational setting. In particular, we derive distribution-free bounds for certain classes of data generation models that do not produce i.i.d. data and are based on the type of interactions that are considered by relational classification algorithms that have been developed in SRL. We conduct empirical studies on synthetic and real data which show that these data generation models are indeed realistic and the derived bounds are tight enough for practical use.  相似文献   

9.
The problem of finding bounds on the H-norm of systems with a finite number of point delays and distributed delay is considered. Sufficient conditions for the system to possess an H-norm which is less or equal to a prescribed bound are obtained in terms of Riccati partial differential equations (RPDE’s). We show that the existence of a solution to the RPDE’s is equivalent to the existence of a stable manifold of the associated Hamiltonian system. For small delays the existence of the stable manifold is equivalent to the existence of a stable manifold of the ordinary differential equations that govern the flow on the slow manifold of the Hamiltonian system. This leads to an algebraic, finite-dimensional, criterion for systems with small delays.  相似文献   

10.
We study heuristic learnability of classes of Boolean formulas, a model proposed by Pitt and Valiant. In this type of example-based learning of a concept class C by a hypothesis class H, the learner seeks a hypothesis h H that agrees with all of the negative (resp. positive) examples, and a maximum number of positive (resp. negative) examples. This learning is equivalent to the problem of maximizing agreement with a training sample, with the constraint that the misclassifications be limited to examples with positive (resp. negative) labels. Several recent papers have studied the more general problem of maximizing agreements without this one-sided error constraint. We show that for many classes (though not all), the maximum agreement problem with one-sided error is more difficult than the general maximum agreement problem. We then provide lower bounds on the approximability of these one-sided error problems, for many concept classes, including Halfspaces, Decision Lists, XOR, k-term DNF, and neural nets.Editor Philip M. LongThis research was supported by the fund for promotion of research at the Technion. Research no. 120-025.  相似文献   

11.
In this paper we consider uncountable classes recognizable by ω-automata and investigate suitable learning paradigms for them. In particular, the counterparts of explanatory, vacillatory and behaviourally correct learning are introduced for this setting. Here the learner reads in parallel the data of a text for a language L from the class plus an ω-index α and outputs a sequence of ω-automata such that all but finitely many of these ω-automata accept the index α if and only if α is an index for L.It is shown that any class is behaviourally correct learnable if and only if it satisfies Angluin’s tell-tale condition. For explanatory learning, such a result needs that a suitable indexing of the class is chosen. On the one hand, every class satisfying Angluin’s tell-tale condition is vacillatorily learnable in every indexing; on the other hand, there is a fixed class such that the level of the class in the hierarchy of vacillatory learning depends on the indexing of the class chosen.We also consider a notion of blind learning. On the one hand, a class is blind explanatorily (vacillatorily) learnable if and only if it satisfies Angluin’s tell-tale condition and is countable; on the other hand, for behaviourally correct learning, there is no difference between the blind and non-blind version.This work establishes a bridge between the theory of ω-automata and inductive inference (learning theory).  相似文献   

12.
This paper connects hard-core set construction, a type of hardness amplification from computational complexity, and boosting, a technique from computational learning theory. Using this connection we give fruitful applications of complexity-theoretic techniques to learning theory and vice versa. We show that the hard-core set construction of Impagliazzo (1995), which establishes the existence of distributions under which boolean functions are highly inapproximable, may be viewed as a boosting algorithm. Using alternate boosting methods we give an improved bound for hard-core set construction which matches known lower bounds from boosting and thus is optimal within this class of techniques. We then show how to apply techniques from Impagliazzo (1995) to give a new version of Jackson's celebrated Harmonic Sieve algorithm for learning DNF formulae under the uniform distribution using membership queries. Our new version has a significant asymptotic improvement in running time. Critical to our arguments is a careful analysis of the distributions which are employed in both boosting and hard-core set constructions.  相似文献   

13.
《国际计算机数学杂志》2012,89(15):3113-3124
In this paper, we study a more general kernel regression learning with coefficient regularization. A non-iid setting is considered, where the sequence of probability measures for sampling is not identical but the sequence of marginal distributions for sampling converges exponentially fast in the dual of a Holder space; the sampling z i , i ≥ 1 are weakly dependent, which satisfy a strongly mixing condition. Satisfactory capacity independently error bounds and learning rates are derived by the techniques of integral operator for this learning algorithm.  相似文献   

14.
15.
Sublearning, a model for learning of subconcepts of a concept, is presented. Sublearning a class of total recursive functions informally means to learn all functions from that class together with all of their subfunctions. While in language learning it is known to be impossible to learn any infinite language together with all of its sublanguages, the situation changes for sublearning of functions. Several types of sublearning are defined and compared to each other as well as to other learning types. For example, in some cases, sublearning coincides with robust learning. Furthermore, whereas in usual function learning there are classes that cannot be learned consistently, all sublearnable classes of some natural types can be learned consistently. Moreover, the power of sublearning is characterized in several terms, thereby establishing a close connection to measurable classes and variants of this notion. As a consequence, there are rich classes which do not need any self-referential coding for sublearning them.  相似文献   

16.
In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exist where the more mind changes the learner is willing to accept, the less the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.  相似文献   

17.
Methods for the direct computation of the maximal structured singular value (s.s.v.) over the frequency range require a recursive application of μ analysis. Introducing the v measure as a skewed s.s.v., we point out the problem can be solved by a single application of the v tool. A mixed v upper bound is then proposed, which provides a direct solution to the problem. The relationship between the mixed μ and v upper bounds is moreover clarified. The nonnegativity of the sensitivity of the mixed μ upper bound is finally obtained as a corollary.  相似文献   

18.
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号