首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The operation of a polymeric electrolyte methanol/air fuel cell connected to a storage tank with anolyte batch recycle is analyzed. When the cell is discharged at constant current, far below the anode reaction limiting current density, the concentration in the tank is found to decrease with time following a lineal variation. At zero time, a high CO2 concentration is detected in the air leaving the cathode compartment, which increased when higher methanol concentration is used in the anode compartment. This effect is associated to the crossover of methanol through the membrane. The amount of CO2 in the air outlet is important, and both this quantity and the crossover flux decrease when methanol concentration diminish in the anolyte. A model derived from electrochemical reactor analysis, that correlates methanol concentration changes in the storage tank, and methanol concentration at the anodic compartment exit with the amount consumed in the cell reaction and the flow through the membrane is developed.  相似文献   

2.
An investigation on the performance of hydrogen production by simultaneous saccharification and fermentation (SSF) in a dual-chamber microbial electrolysis cell (MEC) was carried out to consider different anolyte pH levels and culture temperatures, and the influences of anolyte pH value and culture temperature on changes of current, organic acid and pH value were also evaluated. The maximal hydrogen production rate (HPR) of 2.46 mmol/L/D (hydrogen energy recovery 219.02%) was obtained at the initial anolyte pH of 6.5. Within the range of the tested operation temperatures (30–50 °C), the optimal temperature for hydrogen production by SSF in the MEC systems was 35 °C. Moreover, the contents of organic acids and reducing sugar significantly changed with varying in initial anolyte pH and temperature levels. The result indicates that a low initial anolyte pH value and high culture temperature was beneficial to hydrolysis of cellulose, and a high initial anolyte pH value and a moderate culture temperature to hydrogen production.  相似文献   

3.
Previous research has shown that hydrogen production performance of a PEM methanol electrolyzer was largely improved with a porous flow field made of sintered spherical metal powder compared with a conventional groove type flow field. In this study, we experimentally investigated the effect of the change in grain diameter and material of the porous metal flow field on hydrogen production performance in a PEM methanol electrolyzer cell. The experimental results indicated that the hydrogen production performance of the electrolyzer cell was improved by reducing the grain diameter. This could be mainly attributed to the lower interfacial contact resistance by reducing the grain diameter of the porous metal flow field. For investigating the influence of material, cell performances with a stainless steel and a nickel base alloy were compared.  相似文献   

4.
An indirect fuel cell system is constructed. The system is composed of a redox flow battery (RFB) to extract electrical energy and two chemical reactors (anolyte and catholyte regenerators). A quinone as a redox mediator is reduced by a mixture of hydrogen and carbon monoxide in the anolyte regenerator, whereas a polyoxometalate as another redox mediator is oxidized in the catholyte regenerator, followed by a steady-state power generation at the RFB using the two redox mediators as active materials. This system demonstrates how to reduce the amount of platinum required in a proton-exchange membrane fuel cell (PEMFC), especially when using a fuel other than pure hydrogen. The RFB in our system contains two gas-diffusion electrodes (GDEs) with a platinum electrocatalyst to insert a “pure hydrogen gas phase” between the anolyte and catholyte to avoid cross-contamination. These two GDEs participate in the hydrogen evolution reaction and hydrogen oxidation reaction, respectively, and require only a small amount of platinum. In addition, the catalysts used in the anolyte regenerator are rhodium complexes. However, these catalysts are in a dissolved state (molecular catalysts) with micromolar-order concentrations, and very little noble metal is used. A carbonaceous catalyst without platinum is used in the catholyte regenerator. This eliminates the need for a noble metal for the oxygen reduction reaction, which is the main reason why platinum is used in a large amount in a conventional PEMFC. Steady-state operations of the anode side, the cathode side, and the total system are demonstrated in this work. Although a small amount of noble metal is still required at this stage, this work may contribute to the complete elimination of noble metals from a PEMFC.  相似文献   

5.
镀铂电极在硫化氢间接电解法中的应用   总被引:1,自引:0,他引:1  
赵萍  俞英 《太阳能学报》2001,22(2):219-222
利用间接电解法从硫化氢中制取氢气和硫磺是一种充分利用硫化氢资源的新方法,该文论述了镀铂电极在硫化氢间接电解法中的应用,一种新的固体电解质电极制作方法,对电极析氢性能的测试,电解液的改变对电解性能的影响,实验表明:镀铂电极的表面负载的PTFE乳液具有为阳极柏氢提供疏水孔道和阻碍电极导电性能的双重作用,其含量有一个最佳值,大约为25%-40%,Nafion溶液在Pt电极上的负载有利于H^ 在阳,极阴间的传递,且镀铂电极的表面负载的Nafion溶液的含量升高,电极的析氢性能愈好,电解液的酸度愈大,交换电流密度愈大,电极的析氢性能愈好,在实验范围内,Fe^ 2 ,Fe^3 ,|H^ |H2电解受氢离子扩散控制,阳极电解液的种类及其浓度的改变对电极性能的影响并不显著。  相似文献   

6.
The electrooxidation behavior of dimethyl ether (DME) dissolved in acidic, neutral or alkaline anolyte has been studied. The cyclic voltammetry measurements reveal that DME in alkaline anolyte demonstrates higher electrooxidation reactivity than that in acidic or neutral anolyte. With increasing the NaOH concentration in the anolyte, the electrooxidation reactivity of DME can be further improved. Direct dimethyl ether fuel cells (DDFCs) are assembled by using Nafion membrane as the electrolyte, Pt/C as the cathode catalyst, and Pt-Ru/C as the anode catalyst. It is found that the use of alkaline anolyte can significantly improve the performance of DDFCs. A maximum power density of 60 mW cm−2 has been achieved when operating the DDFC at 80 °C under ambient pressure.  相似文献   

7.
Platinum (Pt) is the most common cathode catalyst in Direct Methanol Fuel Cells (DMFC). However, Pt involved both in the oxidation reaction of methanol and the reduction of oxygen on the cathode side, which limits the performance of DMFCs. Therefore, this study investigates cobalt phthalocyanine (CoPc) as a potential DMFC cathode catalyst capable of inhibiting the reactivity of methanol oxidation. This study investigates the reaction mechanism and adsorption energy of oxygen molecules on Cobalt Phthalocyanine (CoPc) using the Density Functional Theory (DFT). The basis sets of semi-core pseudopotential (DSPP) and effective core potential are used to compare the geometric optimization of the Cobalt Phthalocyanine structure. The adsorption strength of molecular oxygen on the Cobalt metal center of Phthalocyanine is investigated using Partial Density of States and compared with that of Iron Phthalocyanine (FePc). Finally, the results show that the adsorption energy of carbon monoxide and methanol on the Cobalt and Iron metal centers of the Phthalocyanine complex yield low energy adsorption on CoPc. It was observed that the adsorption energy when two metal sites of CoPc and supported CoPc on tungsten atom are involved yields high energy adsorption and bond length of molecular oxygen that would lead to oxygen bond dissociation. Therefore, this study concludes that CoPc has the potential to replace Pt due to its high tolerance to methanol and carbon monoxide oxidation.  相似文献   

8.
This study investigates the production of hydrogen from the electrochemical reforming of short-chain alcohols (methanol, ethanol, iso-propanol) and their mixtures. High surface gas diffusion Pt/C electrodes were interfaced to a Nafion polymeric membrane. The assembly separated the two chambers of an electrochemical reactor, which were filled with anolyte (alcohol + H2O or alcohol + H2SO4) and catholyte (H2SO4) aqueous solutions. The half-reactions, which take place upon polarization, are the alcohol electrooxidation and the hydrogen evolution reaction at the anode and cathode, respectively. A standard Ag/AgCl reference electrode was introduced for monitoring the individual anodic and cathodic overpotentials. Our results show that roughly 75% of the total potential losses are due to sluggish kinetics of the alcohol electrooxidation reaction. Anodic overpotential becomes larger as the number of C-atoms in the alcohol increases, while a slight dependence on the pH was observed upon changing the acidity of the anolyte solution. In the case of alcohol mixtures, it is the largest alcohol that dictates the overall cell performance.  相似文献   

9.
Low-temperature methanol synthesis from CO2 and H2 was carried out using ethanol as a catalytic solvent. The alcohol-assisted method reduced synthesis temperature and enhanced methanol yield (33.80%) at 150 °C (5.0 MPa, Cu/ZnO catalyst). However, ethyl acetate and water were generated as byproducts from the reaction. The byproducts formed azeotrope mixture with methanol and led to a complex product purification. Therefore, in this study, molecular sieves (MS) were introduced to adsorb the byproducts. The effect of different MS (3A and 5A) was studied. It was found that MS helped enhancing methanol yield. The highest methanol yield (42.8%) was obtained when adding MS_3A to adsorb water. The MS_5A could separate methanol and ethyl acetate, providing high methanol purity. The effect of operating conditions was also investigated. When reducing temperature to 130 °C, methanol yield decreased but methanol selectivity (>98%) significantly increased. Controlling temperature and using MS could help enhance the yield and selectivity of methanol.  相似文献   

10.
This paper develops a four-step copper-chlorine cycle for hydrogen production with conceptual modification through flash vaporization and evaluates its economic and environmental performances through exergy approach. The flash vaporization method is employed as a new approach for realizing the anolyte separation under vacuum conditions for reducing the thermal requirement of the anolyte separation step and consequently of the overall cycle. A flash vaporization is usually employed commercially for seawater desalination purposes. However, its utilization in a thermochemical hydrogen production process has not been considered previously which is really one of primary novelties of this investigation. The obtained results for the exergoeconomic and exergoenvironmental analyses of the conceptually modified cycle are also compared with those of the existing integrated cycle at the Ontario Tech University. The exergoeconomic analysis of the cycle has also been carried out for the cycle operating with and without waste heat recovery. In this regard, waste heat recovery from a steel furnace has been considered for supplying the required thermal energy for the hydrolysis step. The cost assessment of the cycle is carried out in the Aspen-plus. Compared with the existing cycle, the cycle with the proposed modification results in a lower unit cost of hydrogen. Moreover, a significant reduction in the unit cost of hydrogen is observed when waste heat recovery is considered for the modified cycle. The average unit hydrogen cost for the modified version of the cycle is evaluated to be 4.7 $/kg which reduces to 2 $/kg with incorporation of waste heat recovery. Furthermore, the overall environmental impact of the existing cycle can be potentially minimized by considering the proposed modification through flash vaporization.  相似文献   

11.
Metal foams are routinely used in structures to enhance stiffness and reduce weight over a range of platforms. In direct methanol fuel cells, the controlled porosity and high electrical conductivity of metal foams provide additional benefits. Performance studies were conducted with direct methanol fuel cells incorporating metal foams as the flow field. The influence of the foam pore size and density on cell performance was investigated. The performance of similar density metal foams but with different pore sizes was non-monotonic due to the opposing trends of electrical contact and CO2 removal with pore size. In contrast, for metal foams with the same in-plane pore size, the performance improved with increasing density. Because the cell operates in a diffusion-dominated regime, its performance showed a strong dependence on methanol concentration and a moderate dependence on methanol flow rate. The feasibility of using metal foams as a gas diffusion layer (GDL) was also explored.  相似文献   

12.
电解液是钒电池能量存储的核心,其组成对电池的能量转化效率、循环稳定性等具有显著影响。本工作针对正负极电解液体积比、电解液价态,较系统地考察了它们对钒电池电化学性能的影响规律。结果表明,保持正极电解液体积不变,单纯增加负极的体积,可提高电池的放电容量,但对电池的能量转换效率影响较小;电解液价态的升高会在一定程度上降低钒电池的放电容量,但其能量转换效率却呈现先升高后降低的抛物线规律;增加负极电解液体积和提高电解液价态均会导致负极活性物质过量,但后者对电池性能的影响更为显著,在后者的基础上前者对能量转换效率的影响也会被放大。  相似文献   

13.
Hydrogen storage in rare earth intermetallic compounds has been undertaken by the use of methanol, in which the possibility of methanol as a vector for chemical hydrogen carriers has been studied. The hydrogen storage efficiency of methanol is relatively high. When the activated DyFe2 and ErFe2 were brought into contact with methanol vapor (40 Torr) in the range 393–453 K, hydride formation readily occurred, where methanol was decomposed over the compounds to form quantitatively carbon monoxide and hydrogen in the form of metal hydride. The characteristics of the reaction were kinetically studied by isotope techniques.  相似文献   

14.
《Energy Conversion and Management》2001,42(15-17):1817-1829
The catalytic methanol steam reforming reaction was investigated by numerical simulation and experiments. Methanol conversion ratio as well as carbon monoxide (CO), which poisons a typical polymer electrolyte fuel cell, increases in a tablet catalyst when temperature is elevated. There is a trade-off relationship between methanol conversion ratio and CO concentration. It was found that the reforming reaction is controlled by heat transfer at large methanol flow rate, where the trade-off relationship shifts to lower methanol conversion ratio and higher CO concentration.To improve the trade-off relationship, internal corrugated metal heater and external catalytic combustion heater were applied to enhance the heat transfer. Optimal cell density for the internal corrugated metal heater, which was about 9×105 cell/m2, was closely related with reaction parameters such as velocity, cell density, geometric surface area and hydraulic diameter. The catalytic combustion heater is larger than the internal corrugated metal heater in size. Both high methanol conversion ratio and low CO concentration were accomplished by heat transfer enhancement with the two techniques at large methanol flow rate.  相似文献   

15.
The electronically conducting hybrid material based on transition metal oxide and conducting polymer has been used as the catalyst support for Pt nanoparticles. The Pt nanoparticles loaded hybrid organic (polyaniline)–inorganic (vanadium pentoxide) composite has been used as the electrode material for methanol oxidation, a reaction of importance for the development of direct methanol fuel cells (DMFC). The hybrid material exhibited excellent electrochemical and thermal stability in comparison to the physical mixture of conducting polymer and transition metal oxide. The Pt nanoparticles loaded hybrid material exhibited high electrocatalytic activity and stability for methanol oxidation in comparison to the Pt supported on the Vulcan XC 72R carbon support. The higher activity and stability is attributed to the better CO tolerance of the composite material.  相似文献   

16.
A new method to produce high-purity hydrogen using photoelectrocatalytic reactions is studied. This integrated process uses solar energy and the Gibbs free energy of oxidation of organic wastes to help reducing the energy consumption of water electrolysis. The method diminishes the thermodynamic potential to 0.77 V and practical voltages to ca. 1.2 V, due to an electrocatalytic reaction in the presence of iron ions. The anolyte is illuminated, and separated from the catholyte by a proton exchange membrane. The process oxidizes water pollutants and avoids the anodic corrosion of a stainless steel anode, but not every sacrificial substance has a positive effect on it.  相似文献   

17.
In a proton exchange membrane (PEM) methanol electrolyzer, the even supply of reactant to and the smooth removal of carbon dioxide from the anode are very important in order to achieve a high hydrogen production performance. An appropriate design of flow field and gas diffusion layer (GDL) is a key factor in satisfying the above requirements. Previous research has shown that hydrogen production performance of the PEM methanol electrolyzer cell was largely improved with a porous flow field made of sintered spherical metal powder compared with a conventional groove type flow field. Based on this improvement, the current study investigated the influence of polytetrafluoroethylene (PTFE) treatment of the anode GDL on hydrogen production performance of the PEM methanol electrolyzer with porous metal flow fields. Influences of operating conditions such as methanol concentration and cell temperature with the flow field were also investigated.  相似文献   

18.
Hydrogen sulfide (H2S) emitted from oil industry's hydrotreating processes can be converted into hydrogen and used back to the same processes through a H2S splitting cycle, where the Bunsen reaction and HI decomposition are two participating reactions. To overcome the difficulties and complications posted in the scaling up of the cycle, direct electrolysis of the Bunsen reaction product solution was proposed and has been studied in a batch electrolysis cell in our earlier work. This paper studies the direct electrolysis using a customer-made, continuous-flow electrolysis cell. The effects of the operating parameters including the current density, the entering HI concentration and flow rate of the anolyte, the toluene to aqueous phase ratio and stirring speed in anolyte cell, the H2SO4 concentration and circulation rate of the catholyte on the performing parameters such as the conversion of iodide ions, the yield of iodine transferred to toluene, and the anodic and cathodic current efficiencies for iodide conversion and hydrogen production were carefully investigated. The results show that the cathodic current efficiency for hydrogen production is nearly 100% for all the runs and that the anodic current efficiency for iodide ion conversion to iodine is relatively low (20%–70%) and varies with the changes in operating parameters. Running at high levels of the current density, the volumetric ratio of toluene to aqueous phase in anolyte, or the stirring speed in anolyte, and low levels of the entering concentration of I? in anolyte or the flow rate of anolyte in electrolysis operation are in favor of having a high iodide conversion and high I2-toluene yield. Iodide anions at a few mmol L?1 level (a few thousandths of the entering concentration) are found in the cathodic chamber caused by its diffuse against the electric field and the proton exchange membrane. The continuous, direct electrolysis of the Bunsen product solution can be considered being adapted in the sulfur-iodine (S–I) water splitting cycle for hydrogen production.  相似文献   

19.
In the anodes of direct methanol fuel cells (DMFCs), Pt poisoning by CO adsorption during methanol electro-oxidation has been a serious problem. Efforts to overcome or minimize this obstacle have largely involved investigations of PtRu bimetallic catalysts. In order to prepare fine PtRu alloyed hydrosols, we used non-ionic surfactants including L121, Pluronic P123, P65, Brij 35, and Tween 20 as stabilizers in this study. The sizes of the prepared metal particles change with the surfactant used. The finest metal hydrosol is obtained when Pluronic P123 and P65 are used. The resulting metal hydrosols with Pluronic P123, Brij 35 and Tween 20 are supported on Vulcan XC-72R. PtRu/XC-72R prepared with Pluronic P123 exhibits the best catalytic activity due to better dispersion of the alloyed metal. To improve further the activity of the PtRu catalyst, the commercial Vulcan XC-72R is replaced with carbon spherule (CS), a home-made carbon support. Electrochemical analyses such as cyclic voltammetry and galvanostatic-polarization tests are performed to evaluate the prepared catalyst. PtRu/CS has a superior performance to PtRu/XC-72R in methanol electro-oxidation when Pluronic P123 is employed as the stabilizer. The higher conductivity and larger inter-particle space of the CS appear to facilitate methanol electro-oxidation.  相似文献   

20.
Photocatalytic conversion of CO2 into value‐added hydrocarbon fuels and/or useful chemical products, using solar energy, has been the focus of active research, owing to its tremendous potential to provide a green fuel (eg, methanol) and simultaneously mitigate global warming by reducing CO2 levels in the atmosphere. CO2 photocatalytic reduction yields various hydrocarbon products. In this paper, we focus on methanol as it is an easily transportable energy‐dense fuel with multifarious applications in the automobile, industrial, and petrochemical sector. The photocatalytic conversion rate of CO2 to methanol depends on 3 factors: the photocatalyst used, photoreactor design, and experimental parameters (or variables). The last factor—experimental parameters—forms the basis of this review paper. These parameters include the reaction temperature, CO2 pressure, solvent used, intensity, wavelength, and duration of the incident light, concentration of organic impurities adsorbed on catalytic surface, addition of hole scavengers, type of reductant used, catalyst loading method, catalyst concentration, and the dissolved oxygen concentration. There have been numerous published works aiming to improve the methanol formation rate by optimizing these experimental parameters. In this paper, we consolidate and review these parameters, and investigate how optimizing them can enhance the photocatalytic conversion rate of CO2 into methanol, thus ushering in the era of a green methanol‐based economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号