首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lesioning the ventral hippocampus of neonatal rats has been proposed as an experimental model of schizophrenia. This lesion causes a syndrome of hyperresponsivity to the stimulant effects of amphetamine, impaired grooming and disrupted social interactions, effects that emerge during adolescence, much like schizophrenia. Persisting cognitive effects of neonatal ventral hippocampal lesions were assessed in the current study, because the hippocampus is critically important for a variety of cognitive functions and cognitive impairment and because it is an important feature of schizophrenia. Spatial learning and working memory were assessed in the radial-arm maze, which is sensitive to the adverse effects of hippocampal lesions made in adults. Lesioned rats showed pronounced deficits in radial-arm maze choice accuracy that persisted throughout training. Deficits were seen during the prepubertal period as well as in adulthood. Even though the lesioned rats performed more poorly, they were significantly less sensitive to the amnestic effects of the nicotinic antagonist mecamylamine and the muscarinic antagonist scopolamine. No significant effects of nicotine or amphetamine were seen in either the lesioned or control groups. The long-lasting deficits in spatial learning and working memory resulting from neonatal ventral hippocampal lesions show that, unlike frontal cortical lesions during the same age, the effects of hippocampal lesions are not overcome during development. The resistance to the amnestic effects of nicotinic and muscarinic acetylcholine (ACh) antagonists suggests that the hippocampus is a critical site for the action of these drugs. Neonatal hippocampal lesions may provide a good model of the cognitive impairments of schizophrenia and may be useful to assess novel drug effects to counteract the cognitive deficits in schizophrenia.  相似文献   

2.
Chronic nicotine infusions have been found to significantly improve working memory performance in the radial-arm maze. This effect is blocked by co-infusions of the nicotinic antagonist mecamylamine. Acute nicotine injections also improve working memory performance in the radial-arm maze. This effect is also blocked by mecamylamine co-administration. Recent local infusions studies have demonstrated the importance of the ventral hippocampus for nicotinic involvement in memory. Local infusions of mecamylamine, DHbetaE or MLA impair working memory performance on the radial-arm maze. The current study was conducted to determine the importance of the ventral hippocampus for the chronic effects of nicotine. Rats were trained on the working memory task in an eight-arm radial maze. After acquisition they underwent either infusions of ibotenic acid lesions or vehicle infusions and received subcutaneous implants of osmotic minipumps that delivered either nicotine at a dose of 5 mg kg-1 day-1 or vehicle in a 2x2 design. The rats then were given 2 days of recovery and were tested on the radial-arm maze three times per week for the next 4 weeks. As seen in previous studies, in the sham lesioned group nicotine infusions caused a significant improvement in choice accuracy. In contrast no nicotine-induced improvement was seen in the rats after ibotenic acid lesions of the ventral hippocampus. The effect of nicotine was blocked even though this lesion did not cause a deficit in performance. Previous work showed that chronic nicotine infusion still caused a significant improvement in working memory performance in the radial-arm maze after knife-cut lesions of the fimbria-fornix carrying the septo-hippocampal cholinergic innervation. Thus it appears that it is the postsynaptic nicotinic receptors in the ventral hippocampus which are critically important for the expression of the chronic nicotine induced working memory improvement.  相似文献   

3.
The regulation of dopaminergic and cholinergic function by neurokinin-3 (NK3) receptor activation was examined in vivo in urethane-anaesthetized guinea pigs with microdialysis probes. The local application of the NK3 tachykinin receptor agonist senktide in the region of dopamine cell bodies (pars compacta of the substantia nigra and ventral tegmental area) and in the area of cholinergic cell bodies (septal area) markedly enhanced the extracellular dopamine (DA) and acetylcholine (ACh) concentration throughout their respective target areas, i.e. striatum, nucleus accumbens, prefrontal cortex for dopaminergic systems and hippocampus for cholinergic neurons. The enhancing effect of senktide on neurotransmitter release was dose dependently blocked by the selective non-peptide NK3 receptor antagonist SR142801 (0.1-1 mg/kg, i.p.), whereas its inactive S-enantiomer SR142806 (0.3-1 mg/kg, i.p.) did not exert any antagonistic activity on the effect of intranigral or intraseptal application of senktide. These results demonstrate that NK3 receptors can modulate the activity of central DA and ACh systems.  相似文献   

4.
Previous studies have demonstrated that stimulation of the ventral hippocampal (VH) formation (including the ventral CA1 and subicular areas) elicits increased locomotor activity in rats. The locomotor-activating effects of VH stimulation have been hypothesized to be mediated via hippocampal output to cortical and subcortical dopamine (DA) systems. This study examined whether increased locomotor activity produced by VH stimulation was blocked by pretreatment with a DA receptor antagonist, and whether DA metabolism in subdivisions of the nucleus accumbens, caudate-putamen, and prefrontal cortex was elevated by VH stimulation. Stimulation of the VH (defined as the ventral CA1 and its borders, ventral subiculum, and entorhinal cortex) with the cholinergic agonist carbachol was found to elevate locomotor activity, while pretreatment with the D2 receptor antagonist haloperidol blocked this effect. Stimulation of the VH did not alter DA metabolism (i.e., ratio of the DA metabolites DOPAC or HVA/DA) in any of the brain regions studied. These results indicate that the increased locomotor activity elicited by VH stimulation is not associated with dramatic increases in DA metabolism, but that it does require tonic activation of D2 receptors.  相似文献   

5.
This study examined the effect of the cannabinoid receptor agonist, WIN 55212-2, on the electrically evoked release of [14C]acetylcholine (ACh) from superfused brain slices from the hippocampus, a region with a high density of cannabinoid receptors. A comparison was also made with [14C]ACh release from the nucleus accumbens, which has relatively fewer cannabinoid receptors. In the hippocampal slices, WIN 55212-2 produced a dose-dependent inhibition of [14C]ACh release, with an EC50 of 0.03 microM and a maximal inhibition of 81% at 1 microM. In the nucleus accumbens slices, WIN 55212-2 produced a weak inhibition of [14C]ACh release, which did not quite reach statistical significance. The inhibition of electrically evoked hippocampal [14C]ACh release by WIN 55212-2 could be prevented by the cannabinoid receptor antagonist, SR 141716A (EC50, 0.3-1.0 microM). In addition to antagonizing the effects of WIN 55212-2, SR 141716A alone produced a 2-fold potentiation of the electrically stimulated [14C]ACh release in this region (EC50, 0.1-0.3 microM). By contrast, in nucleus accumbens slices, no potentiation of the stimulated release of [14C]ACh release by SR 141716A was observed. Basal [14C]ACh release was unaffected by WIN 55212-2 or SR 141716A in either area. These results suggest that cannabinoid receptor activation can produce a strong inhibition of ACh release in the hippocampus. Furthermore, the potentiation of ACh release in the hippocampus by SR 141716A alone suggests either that this compound is an inverse agonist at cannabinoid receptors or it is antagonizing the actions of an endogenous ligand acting on these receptors.  相似文献   

6.
The role of kappa opioid receptor agonists in learning and memory is controversial. In the present study, the effects of U-50,488H on scopolamine-, mecamylamine- and dizocilpine-induced learning and memory impairments in rats were investigated. Scopolamine (3.3 mumol/kg s.c.), a muscarinic cholinergic antagonist, and mecamylamine (40 mumol/kg s.c.), a nicotinic cholinergic antagonist, significantly impaired learning and memory in rats in a step-through type passive avoidance test. Administration of U-50,488H (0.17 or 0.51 mumol/kg s.c.) 25 min before the acquisition trial reversed the impairment of learning and memory induced by scopolamine and mecamylamine. Although low doses of scopolamine (0.17 mumol/kg) and mecamylamine (12 mumol/kg) had no effect, concurrent administration of both antagonists induced impairment of learning and memory. Scopolamine significantly increased acetylcholine release in the hippocampus as determined by in vivo brain microdialysis. On the other hand, mecamylamine significantly decreased acetylcholine release. U-50,488H completely blocked the decrease in acetylcholine release induced by mecamylamine, whereas it only partially blocked the increase of acetylcholine induced by scopolamine. On the other hand, an endogenous kappa opioid receptor agonist, dynorphin A (1-13), did not block the increase in acetylcholine release induced by scopolamine. The antagonistic effect of U-50,488H was abolished by pretreatment with nor-binaltorphimine (4.9 nmol/rat i.c.v.), a selective kappa opioid receptor antagonist. U-50,488H did not affect the impairment of learning and memory induced by the blockade of NMDA receptors by dizocilpine ((+)-MK-801). These results suggest that U-50,488H reverses the impairment of learning and memory induced by the blockade of cholinergic transmission and abolishes the decrease of acetylcholine release induced by mecamylamine via the kappa receptor-mediated opioid neuronal system.  相似文献   

7.
Systemic nicotine enhances burst firing of dopamine neurons in the ventral tegmental area and dopamine release in the nucleus accumbens, mainly via stimulation of nicotinic acetylcholine receptors in the ventral tegmental area. Given that both the neuronal activity of mesolimbic dopamine neurons and terminal dopamine release are regulated by excitatory amino acid inputs to the ventral tegmental area and that nicotine facilitates glutamatergic transmission in brain, we investigated the putative role of ionotropic glutamate receptors within the ventral tegmental area for the effects of nicotine on dopamine release in the nucleus accumbens using microdialysis, with one probe implanted in the ventral tegmental area for drug application and another in the ipsilateral nucleus accumbens for measuring dopamine, in awake rats. Systemic nicotine (0.5 mg/kg, s.c.) and infusion of nicotine (1.0 mM) into the ventral tegmental area increased dopamine output in the nucleus accumbens. Intrategmental infusion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (0.1 mM) or N-methyl-D-aspartate (0.3 mM) increased accumbal dopamine release; these effects were antagonized by concomitant infusion of a selective antagonist at N-methyl-D-aspartate receptors, 2-amino-5-phosphonopentanoic acid (0.3 mM), and non-N-methyl-D-aspartate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (0.3 mM), respectively. Infusion of either antagonist (0.3 or 1.0 mM) into the ventral tegmental area did not affect basal dopamine levels, whereas infusion of 2-amino-5-phosphonopentanoic acid, but not 6-cyano-7-nitroquinoxaline-2,3-dione, starting 40 min before nicotine injection dose-dependently attenuated the nicotine-induced increase in accumbal dopamine release. Concurrent intrategmental infusion of 2-amino-5-phosphonopentanoic acid and nicotine decreased nicotine-induced dopamine release in the nucleus accumbens. These results indicate that the stimulatory action of nicotine on the mesolimbic dopamine system is to a considerable extent mediated via stimulation of N-methyl-D-aspartate receptors within the ventral tegmental area.  相似文献   

8.
These experiments tested whether nucleus accumbens muscarinic or nicotinic acetylcholine receptor activation is required for rats to learn to lever press for sucrose. Muscarinic blockade with scopolamine (1.0 μg/side or 10.0 μg/side), but not nicotinic antagonism with mecamylamine (10.0 μg/side), inhibited learning and performance when applied to the core or shell. Further experiments showed that acute accumbens scopolamine treatment increased locomotor activity and reduced sucrose consumption. However, microanalyses of behavioral events in the instrumental chamber revealed that reductions of lever press performance during muscarinic blockade were not due to gross motor dysfunction. Accumbens core scopolamine was subsequently shown to reduce the amount of work rats would expend under a progressive ratio paradigm. These novel results implicate nucleus accumbens muscarinic receptors in the modulation of appetitive learning, performance, and motivation for food. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
The nucleus accumbens and ventral pallidum receive dopamine (DA) projections from the mesencephalon. Although DA inputs to the nucleus accumbens are implicated in both locomotion and reward processes, little is known of the behavioural significance of DA in the ventral pallidum. These studies examined the effects of D-amphetamine injected into the nucleus accumbens or ventral pallidum on locomotor activity and responding for a conditioned reward (CR). In the nucleus accumbens D-amphetamine dose dependently (1, 3 and 10 microg) increased locomotion within 5-10 min of injection. Intra-ventral pallidum microinjections of D-amphetamine also increased activity in this dose range, but the effect occurred with a longer latency (5-20 min). The magnitude of the response evoked by ventral pallidum injections was lower than that evoked by nucleus accumbens injections. The GABAA antagonist picrotoxin (0.1 microg) stimulated activity when injected into the ventral pallidum but not the nucleus accumbens, providing a pharmacological dissociation between the two injection sites. In the CR studies, D-amphetamine injected into both sites potentiated responding for a CR previously paired with food delivery, without altering responding on an inactive lever. Picrotoxin injected into the ventral pallidum reduced responding and abolished the selectivity of responding for CR. The results show that DA release in the ventral pallidum enhances locomotion and responding for a CR, providing evidence that DA in the ventral pallidum plays a significant role in the mediation of the effects of D-amphetamine. The failure of picrotoxin to elevate responding for CR despite increasing locomotor activity indicates that pharmacologically-induced blockade of GABAA receptors in the ventral pallidum disrupts goal-directed responding.  相似文献   

10.
Rats infused subcutaneously with 9 mg/kg/day nicotine tartrate for 7 days exhibit behavioral abstinence signs following either termination of nicotine infusion or injection of the noncompetitive nicotinic antagonists mecamylamine (s.c.) or hexamethonium (ic.c.v.). This study examined the abstinence precipitating effects of dihydro-beta-erythroidine (DHbetaE), a competitive nicotinic antagonist. Twenty-four nicotine-dependent rats were injected in the third ventricle with 10, 18, or 25 microg DHbetaE in 20 microl saline or with saline alone and observed for abstinence signs over a 20-min period. There was a significant positive linear trend of overall abstinence signs as a function of dose, p < 0.01. In 12 nondependent rats, the high dose of DHbetaE did not induce more abstinence-like signs than saline alone. In a second experiment, 18 nicotine-dependent rats were injected s.c. with 1 or 6 mg/kg of the muscarinic antagonist scopolamine or with saline alone. Few abstinence signs were observed in any group: there was no significant drug effect. The results suggest that nicotine abstinence signs observed in the rat are specific to reduced stimulation of previously overstimulated nicotinic receptors.  相似文献   

11.
Our earlier studies suggest dopamine and serotonin interact with acetylcholine (ACh) in the nucleus accumbens (NAC) as part of a system for motivation and reinforcement. The purpose of the present experiment was to characterize a possible link between GABA and acetylcholine in the nucleus accumbens using microdialysis in freely moving rats. Different doses of GABA, muscimol, baclofen, saclofen and bicuculline were locally infused into the nucleus accumbens through the microdialysis probe. GABA and its agonists dose-dependently decreased extracellular levels of acetylcholine in the nucleus accumbens. In contrast the GABAA antagonist, bicuculline, dose-dependently increased extracellular ACh while the GABAB antagonist, saclofen, was without effect. Co-infusion of bicuculline or saclofen was shown to block the decrease in recoverable ACh produced by muscimol or baclofen, respectively. The results demonstrate an inhibitory action of GABA on acetylcholine interneurones in the nucleus accumbens involving both GABAA and GABAB receptor subtypes. In addition a tonic inhibitory GABAergic tone is probably mediated through GABAA receptors.  相似文献   

12.
Using dissociated rat carotid body (CB) cultures, we compared levels of extracellular dopamine (DA) around oxygen-sensitive glomus cells grown for approximately 12 days in normoxia (Nox; 20% O2), chronic hypoxia (CHox; 6% O2), or chronic nicotine (CNic; 10 microM nicotine, 20% O2), with or without acetylcholine (ACh) receptor (AChR) agonists/antagonists and blockers of DA uptake. In Nox cultures, extracellular DA, determined by HPLC and normalized to the number of tyrosine hydroxylase-positive glomus cells present, was augmented by acute (approximately 15-min) exposure to hypoxia (5% O2; approximately 6x basal), high extracellular K+ (30 mM; approximately 10x basal), nomifensine (1 microM; a selective DA uptake inhibitor; approximately 3x basal), and nicotine (100 microM; approximately 5x basal), but not methylcholine (300 microM; a specific muscarinic agonist). In contrast, in CHox cultures where basal DA release is markedly elevated (approximately 9x control), the stimulatory effect of high K+ (3-4x basal) and acute hypoxia (approximately 2x basal) on DA release persisted, but nicotine and nomifensine were no longer effective and methylcholine had a partial inhibitory effect. In CNic cultures, basal DA levels were also elevated (approximately 9x control), similar to that in CHox cultures; however, although acute hypoxia had a stimulatory effect on DA release (approximately 2x basal), nicotine, nomifensine, and high K+ were ineffective. The elevated basal DA in both CHox and CNic cultures was attenuated by acute or chronic treatment with mecamylamine (100 microM), a nicotinic AChR (nAChR) antagonist. In addition, long-term (16-h), but not acute (15-min), treatment with the muscarinic antagonist atropine (1 microM) produced an additional enhancement of basal DA levels in CHox cultures. Thus, after chronic hypoxia or nicotine in vitro, extracellular DA levels around CB chemoreceptor cell clusters appear to be set by a variety of factors including released ACh, positive and negative feedback regulation via nAChRs and muscarinic AChRs, respectively, and modulation of DA transporters. These results provide insight into roles of endogenous transmitters in the adaptation of CB chemoreceptors to chronic hypoxia and suggest pathways by which neuroactive drugs, e.g., nicotine, can interfere with the protective chemoreflex response against hypoxia.  相似文献   

13.
We studied the postnatal development of the release of acetylcholine (ACh) and of presynaptic, release-inhibiting muscarinic autoreceptors in the rat hippocampus. To this end, hippocampal slices (350 microns thick) from rats of various postnatal ages (postnatal day 3 [P3] to P16) were preincubated with [3H]choline and stimulated twice (S1, S2: 360 pulses, 2 ms, 3 Hz, 60 mA) during superfusion with physiological buffer containing hemicholinium-3 (10 microM). In parallel, the activities of hemicholinium-sensitive high-affinity choline uptake (HACU, in synaptosomes) and of choline acetyltransferase (ChAT, in crude homogenates) were determined as markers for the cholinergic ingrowth. In hippocampal slices preincubated with [3H]choline, the electrically evoked overflow of 3H at S1 increased from 0.11 (P3) to 0.81% of tissue 3H (P16), the latter value being still much lower than that of hippocampal slices from adult rats (2.89% of tissue 3H). Already at P3 the evoked overflow of 3H was Ca(2+)-dependent and sensitive to tetrodotoxin, indicating an action potential-evoked exocytotic mechanism of ACh release. The muscarinic agonist oxotremorine (1 microM) significantly inhibited the evoked ACh release in hippocampal slices with increasing effectivity from P4 to P16; no significant effect was detectable at P3. The ACh esterase inhibitor physostigmine and the muscarinic antagonist atropine (1 microM, each) exhibited significant inhibitory and facilitatory effects, respectively, only at P15-16. The specific activities of both hippocampal HACU (pmoles/mg protein/min) and ChAT (nmoles/mg protein/min) continuously increased from P3 to P16. It is concluded (1) that cholinergic nerve terminals arriving at the hippocampal formation during postnatal ingrowth are already endowed with the apparatus for action potential-induced, Ca(2+)-sensitive (exocytotic) ACh release; (2) that, in contrast, the expression of presynaptic muscarinic autoreceptors on these cholinergic axon terminals is delayed; and (3) that autoinhibition due to endogenous ACh develops even later, probably when the density of presynaptic terminals in the hippocampus and hence, the concentration of released ACh has reached a suprathreshold value.  相似文献   

14.
The modulation of [3H]ACh release by nicotinic compounds was studied in superfused rat hippocampal synaptosomes loaded with [3H]choline, (-)-Nicotine (0.1-10 microM) evoked a dose-dependent increase in [3H]ACh release; higher concentrations were less effective. Nicotine-evoked release was Ca(2+)-dependent, and blocked by the nicotinic antagonists dihydro-beta-erythroidine, mecamylamine, and pempidine. The alpha 7-selective antagonist methyllycaconitine did not inhibit nicotine-evoked release when tested at 1 microM, although at 10 microM some attenuation of the response was observed. Six agonists tested were equally efficacious in stimulating [3H]ACh release, as judged by the maximum responses, and gave the following EC50 values: (+/-)-epibatidine 0.12 microM; (+)-anatoxin-a 0.14 microM; (-)-nicotine 0.99 microM; (-)-cytisine 1.06 microM; ABT-418 2.6 microM; isoarecolone 43 microM. Each agonist generated a "bell-shaped" dose response curve, suggesting desensitisation at higher concentrations. This is supported by analysis of repetitive stimulation with (-)-nicotine and (-)-cytisine: S2/S1 ratios declined sharply with increasing concentration, whereas subsequent KC1-evoked release remained constant. These results are discussed in terms of possible nicotinic receptor subtypes that might be present on hippocampal nerve terminals.  相似文献   

15.
We investigated if activation of the muscarinic or nicotinic acetylcholine receptors and serotonin (5-hydroxytryptamine; 5-HT) subtype 2 receptors would have additive or synergistic effects on the suppression of thalamocortically generated rhythmic neocortical high-voltage spindles (HVSs) in aged rats. The 5-HT2 receptor antagonist, ketanserin, at a moderate dose (5 mg/kg) prevented the ability of a muscarinic acetylcholine receptor agonist, (oxotremorine 0.1 mg/kg), and a nicotinic acetylcholine receptor agonist (nicotine 0.1 mg/kg), to decrease HVSs. At a higher dose (20 mg/kg), ketanserin completely blocked the decrease in HVSs produced by moderate doses of muscarinic acetylcholine receptor agonists (pilocarpine 1 mg/kg and oxotremorine 0.1 mg/kg), and by a high dose of nicotine (0.3 mg/kg), though not that produced by high doses of pilocarpine (3 mg/kg) and oxotremorine (0.9 mg/kg). The ability of a 5-HT2 receptor agonist, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.1-1.0 mg/kg), to suppress HVSs was non-significantly modulated by the nicotinic acetylcholine receptor antagonist, mecamylamine (1-15 mg/kg), and the muscarinic acetylcholine receptor antagonist, scopolamine (0.03-0.3 mg/kg). The effects of the drugs on behavioral activity could be separated from their effects on HVSs. The results suggest that activation of the muscarinic or nicotinic acetylcholine receptors plus 5-HT2 receptors has additive effects in the suppression of thalamocortical oscillations in aged rats.  相似文献   

16.
This study was conducted to assess the involvement of N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid (GABA) receptor systems, located in specific limbic brain regions. in the discriminative stimulus effects of ethanol. Male Long-Evans rats were trained to discriminate between intraperitoneal (i.p.) injections of ethanol (1 g/kg) and saline on a two-lever drug discrimination task. The rats were then implanted with bilateral injector guides aimed at the nucleus accumbens core (AcbC), prelimbic cortex (PrLC), hippocampus area CA1 (CA1), or extended amygdala (i.e., at the border of the central and basolateral nuclei). Infusions of the non-competitive NMDA antagonist MK 801 in the AcbC or CA1 resulted in dose-dependent full substitution for i.p. ethanol. MK 801 infusion in the PrLC or amygdala failed to substitute for ethanol. Injection of the competitive NMDA antagonist CPP in the AcbC also failed to substitute for ethanol. Co-infusion of MK 801 in the hippocampus potentiated the effects of MK 801 in the AcbC, whereas NMDA infusion in the hippocampus attenuated the ability of MK 801 in the AcbC to substitute for ethanol. The direct GABA(A) agonist muscimol resulted in dose-dependent full substitution for i.p. ethanol when it was injected into the AcbC or amygdala, but failed to substitute when administered in the PrLC. Co-infusion of MK 801, but not CPP, potentiated the effects of muscimol in the AcbC. These results demonstrate that ethanol's discriminative stimulus function is mediated centrally by NMDA and GABA(A) receptors located in specific limbic brain regions. The data also suggest that the discriminative stimulus effects of ethanol are mediated by interactions between ionotropic GABA(A) and NMDA receptors in the nucleus accumbens, and by interactions among brain regions.  相似文献   

17.
Dorsal hippocampal cholinergic modulation of behavior in different tests of anxiety was investigated by direct injection of the muscarinic M? and M? receptor antagonists, pirenzepine and gallamine, and the nicotinic receptor antagonist mecamylamine. In the social interaction test, the anxiogenic effect of pirenzepine (30–100 ng) provided evidence for a tonic cholinergic anxiolytic action mediated by postsynaptic M? receptors. The anxiogenic action of mecamylamine (30 and 100 ng) was most likely mediated by its action of presynaptic nicotinic receptors to reduce acetylcholine release. Gallamine (10–1,000 ng) was without effect, suggesting that M? receptors in this brain region do not play a significant role in this behavioral test. On Trial 1 in the elevated plus-maze, the receptor antagonists were without any effect, but in those with a previous 5-min experience of the plus-maze pirenzepine and mecamylamine had anxiogenic effects in the dose range of 30–300 ng; gallamine (100 and 300 ng) was without significant effect. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Dorsal hippocampal cholinergic modulation of behavior in different tests of anxiety was investigated by direct injection of the muscarinic M1 and M2 receptor antagonists, pirenzepine and gallamine, and the nicotinic receptor antagonist mecamylamine. In the social interaction test, the anxiogenic effect of pirenzepine (30-100 ng) provided evidence for a tonic cholinergic anxiolytic action mediated by postsynaptic M1 receptors. The anxiogenic action of mecamylamine (30 and 100 ng) was most likely mediated by its action of presynaptic nicotinic receptors to reduce acetylcholine release. Gallamine (10-1,000 ng) was without effect, suggesting that M2 receptors in this brain region do not play a significant role in this behavioral test. On Trial 1 in the elevated plus-maze, the receptor antagonists were without any effect, but in those with a previous 5-min experience of the plus-maze pirenzepine and mecamylamine had anxiogenic effects in the dose range of 30-300 ng; gallamine (100 and 300 ng) was without significant effect.  相似文献   

19.
The effects of local administration of cholinergic drugs on the release of acetylcholine in the septo-hippocampal system were investigated using intracerebral microdialysis. Dialysis probes were implanted in the cell-body area of septo-hippocampal neurones in the medial septal area, and in the terminal area of the same neurones in the ventral hippocampus. Drugs were administered locally via the dialysis probe. Administration of the mixed muscarinic/nicotinic receptor agonist carbachol caused a decrease, whereas administration of the muscarinic receptor antagonist methyl-atropine caused an increase in the output of acetylcholine in both the hippocampus and the medial septal area. In contrast, perfusion with the same drugs and the acetylcholine esterase inhibitor neostigmine bromide in the septal area had little or no effect on the output of acetylcholine in hippocampus. The results indicate that acetylcholine autoreceptors are localised on nerve terminals in medial septal area and hippocampus, and exert an inhibitory control over acetylcholine release. However, autoreceptors seem to be sparse or absent on dendrites and cell bodies of septo-hippocampal cholinergic neurones.  相似文献   

20.
Prepulse inhibition (PPI) of the acoustic startle response and open-field locomotor activity were measured after bilateral infusion of N-methyl-[D]-aspartate into the ventral (0.10, 0.25, 0.50 Ag/side) and dorsal (0.10, 0.25, 0.50, 0.70 wg/side) hippocampus of Wistar rats. Dose-dependent hyperactivity and disruption of PPI-behavioral effects related to psychotic symptoms-were observed after ventral infusions but were virtually absent after dorsal infusions. This functional dorsal-ventral difference might be related to the different connections of the dorsal and ventral hippocampus with the amygdala, nucleus accumbens, and prefrontal cortex, which have been implicated in the regulation of locomotor activity and PPI. Hippocampal overactivity has been associated with schizophrenia. The findings suggest that overstimulation of the ventral hippocampal projections may contribute to behavioral outcomes related to psychotic symptoms. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号