首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a dynamic solution of the propagating thermoelastic waves in functionally graded material (FGM) plate subjected to stress-free, isothermal boundary conditions is presented in the context of the Green–Naghdi (GN) generalized thermoelastic theory. The FGM plate is composed of two orthotropic materials. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The coupled wave equation and heat conduction equation are solved by the Legendre orthogonal polynomial series expansion approach. The convergency of the method is discussed through a numerical example. The dispersion curves of the inhomogeneous thermoelastic plate and the corresponding pure elastic plate are compared to show the characteristics of thermal modes and the influence of the thermoelasticity on elastic modes. The displacement, temperature and stress distributions of elastic modes and thermal modes are shown to discuss their differences. A plate with a different gradient variation is calculated to illustrate the influence of the gradient field on the wave characteristics.  相似文献   

2.
Functionally graded material (FGM) is a promising heat insulation material. Wave propagation in FGM structures has received much attention for the purpose of non-destructive testing and evaluation. Few literatures dealt with the thermoelastic wave in FGM structures although the thermal effect would cause attenuations of elastic waves. In this paper, guided thermoelastic waves in FGM plates subjected to stress-free, isothermal boundary conditions are investigated in the context of the Green–Lindsay (GL) generalized thermoelastic theories (with two relaxation times). Coupled wave equations and heat conduction equation are solved by the Legendre polynomial approach. Dispersion curves for a pure elastic graded plate are calculated to make a comparison with the published data. For the thermoelastic graded plate, dispersion curves of thermal modes and elastic modes are illustrated simultaneously. Attenuation curves for graded plates with different relaxation times are compared. The influences of different material gradient shapes are discussed. Two homogeneous thermoelastic plates with different volume fractions are obtained to show their differences from graded plates. Finally, thermoelastic wave dispersion curves for a homogeneous plate and a graded plate are calculated in the context of the classical coupled thermoelastic theory (CT) to show its differences and similarities to the generalized theory.  相似文献   

3.
The objective of this work is to provide a rigorous analysis of thermoelastic ultrasonic waves in transversely isotropic plates. Characteristic features such as dispersion curves of thermoelastic waves of plates are investigated and the influence of coupling in the heat equation on these features is critically examined. If the propagation of the waves is along the axis of symmetry of the plate, then it is possible to decouple the antisymmetric modes from the symmetric ones. This is conveniently done in approximate theories by retaining and omitting various terms in the expansions for the displacement and temperature. In this work, it is assumed that the wave propagation is along the axis of symmetry of an infinite anisotropic plate. Hence, extensional (symmetric) modes can be investigated apart from the antisymmetric modes. Displacement and temperature are expanded across the thickness of the plate using Legendre polynomials. Obviously, such a theory best fits those applications where a low frequency pulse is employed. Further, keeping only the leading terms in the expansion of displacement and temperature gives rise to a lower order theory, which predicts well the correct behavior of symmetric modes in relatively smaller frequency range. Results also show that the effect of coupling in the heat equation is insignificant for thermoelastic waves and can be ignored.  相似文献   

4.
Analysis for the propagation of thermoelastic waves in a homogeneous, transversely isotropic, thermally conducting plate bordered with layers of inviscid liquid or half space of inviscid liquid on both sides, is investigated in the context of coupled theory of thermoelasticity. Secular equations for homogeneous transversely isotropic plate in closed form and isolated mathematical conditions for symmetric and anti-symmetric wave modes in completely separate terms are derived. The results for isotropic materials and uncoupled theories of thermoelasticity have been obtained as particular cases. It is shown that the purely transverse motion (SH mode), which is not affected by thermal variations, gets decoupled from rest of the motion of wave propagation and occurs along an in-plane axis of symmetry. The special cases, such as short wavelength waves and thin plate waves of the secular equations are also discussed. The secular equations for leaky Lamb waves are also obtained and deduced. The amplitudes of displacement components and temperature change have also been computed and studied. Finally, the numerical solution is carried out for transversely isotropic plate of zinc material bordered with water. The dispersion curves for symmetric and anti-symmetric wave modes, attenuation coefficient and amplitudes of displacement and temperature change in case of fundamental symmetric (S0) and skew symmetric (A0) modes are presented in order to illustrate and compare the theoretical results. The theory and numerical computations are found to be in close agreement.  相似文献   

5.
The mean waves in a medium with random inhomogeneities are studied within the theory of linear thermoelasticity. Under the assumption of small random fluctuations approximate integro-differential equations governing the mean displacement and temperature fields are derived. For the elastic case the material behaves effectively as a viscoelastic body with memory. The dispersion equation is obtained for the thermoelastic case. This equation is analyzed for some special cases. The random effects introduce attenuation and change of phase speeds for the compressional and shear waves. For weak thermoelastic coupling, the shear wave is not affected by the random thermal properties. Explicit results are obtained for general and special cases. In general the mean fields are coupled in a complicated way. Therefore an uncoupled theory is presented. Then the problems with random boundary conditions or a randomly varying boundary are discussed. Different perturbation methods are given. Two examples are provided respectively by the heat conduction across a rough surface and the hydrodynamic theory of lubrication under a random loading.  相似文献   

6.
Propagation of plane harmonic thermoelastic diffusive waves in a homogeneous, transversely isotropic, thin elastic layer of finite width is studied, in the context of the theory of coupled thermoelastic diffusion. According to the characteristic equation, three quasi-longitudinal waves, namely, quasi-elastodiffusive (QED) mode, quasi-mass diffusion (QMD) mode, and quasi-thermodiffusive (QTD) mode can propagate in addition to quasi-transverse waves (QSV) mode and the purely quasi-transverse motion (QSH) mode, which is not affected by thermal and diffusion vibrations, gets decoupled from the rest of the motion of wave propagation. The secular equations corresponding to the symmetric and skew symmetric modes of the layer are derived. The amplitudes of displacements, temperature change, and concentration for symmetric and skew symmetric modes of vibration of the layer are computed numerically. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient, and amplitudes of displacements, temperature change, and concentration are presented graphically in order to illustrate and compare the results analytically. Some special cases of the frequency equation are also deduced and compared with the existing results.  相似文献   

7.
The propagation of magnetic-thermoelastic plane wave in an initially unstressed, homogeneous isotropic, conducting plate under uniform static magnetic field has been investigated. The generalized theory of thermoelasticity is employed, by assuming electrical behaviour as quasi-static and the mechanical behaviour as dynamic, to study the problem. The secular equations for both symmetric and skew-symmetric waves have been obtained. The magneto-elastic shear horizontal (SH) mode of wave propagation gets decoupled from rest of the motion and it is not influenced by thermal variations and thermal relaxation times. At short wavelength limits, the secular equations for symmetric and skew-symmetric modes reduce to Rayleigh surface wave frequency equation, because a finite thickness plate in such a situation behaves like a semi-infinite medium. Thin plate results are also deduced at the end. Dispersion curves are represented graphically for various modes of wave propagation in different theories of thermoelasticity. The amplitudes of displacement, perturbed magnetic field and temperature change are also obtained analytically and computed numerically. The result in case of elastokinetics, magneto-elasticity and coupled magneto-elasticity has also been deduced as special cases at appropriate stages of this work.  相似文献   

8.
基于线性三维弹性理论和Kelvin-Voigt模型,采用勒让德正交多项式展开法推导了黏弹性正交各向异性空心圆柱中纵向导波的波动方程,数值求解了波动方程并阐述了相关方程的含义。首先计算了大径厚比下黏弹性管的相速度频散曲线和衰减曲线,并与已发表文献的结果进行了对比,验证了程序的正确性,并进一步计算了低阶纵向导波的位移分布和应力分布曲线,验证了方法的可靠性。然后利用方程的解耦特性,分别求解了不同径厚比、不同黏性常数下纵向模态和扭转模态的频散和衰减曲线,研究了径厚比和黏性常数效应对两种模态的影响。最后针对扭转模态导波,研究了材料相关黏弹性常数对其频散特性和衰减特性的影响。   相似文献   

9.
非均匀复合材料板中剪切波传播的研究   总被引:1,自引:0,他引:1  
基于弹性界层中弹性波干涉理论,采用有效介质法,研究了剪切波在非均匀、纤维随机分布复合材料板中的传播,得到了非均匀弹性介质内的有效波数。通过满足弹性有界层的上、下边界条件,得到了非均匀界层中的频散方程。作为特例,绘出了不同参数下板中的前四阶频散曲线。可以看出,非均匀弹性有界层中的频散曲线和均匀界层中的有很大不同。最后分析了纤维和基体特性比、纤维的体积份数以及板厚与纤维半径比对频散曲线的影响。  相似文献   

10.
The propagation of circularly crested waves in a homogeneous, transversely isotropic, thermally conducting plate bordered with layers of inviscid liquid or half space of inviscid liquid on both sides is investigated in the context of conventional coupled thermoelasticity, Lord-Shulman and Green-Lindsay theories of thermoelasticity. Secular equations for circular homogeneous transversely isotropic plate in closed form and isolated mathematical conditions for symmetric and antisymmetric wave modes in completely separate terms are derived. The results for isotropic materials and uncoupled theories of thermoelasticity have been obtained as particular cases. The special cases such as short wavelength waves, thin plate waves and leaky Lamb waves of the secular equation are also deduced and discussed. The amplitudes of displacement components and temperature change have also been computed and studied. Finally, the numerical solution is carried out for transversely isotropic circular plate of cobalt material bordered with water. The dispersion curves for symmetric and antisymmetric wave modes, attenuation coefficient and amplitudes of displacement and temperature change in case of fundamental symmetric (S0) and skew symmetric (A0) modes are presented in order to illustrate and compare the theoretical results. The analytical and numerical results are found to be in close agreement.  相似文献   

11.
The main objective of this article is the exploitation of the generalized finite difference method to study the thermoelastic wave propagation, that is, the dynamic behaviors of displacement and temperature field in a thick hollow cylinder. The thermoelasticity governing equations are derived based on Green–Naghdi coupled thermoelasticity theory (without energy dissipation). The generalized finite difference (GFD) method is used to approximate the space variables, and Newmark finite difference (NFD) is employed to obtain the behaviors of parameters in time domain. The time histories of displacement and temperature fields across the thickness of the cylinder are obtained and the propagations of thermal and elastic waves are illustrated at various times. Using the GFD method, the wave front in temperature and elastic domains can be tracked, and the comparison between results based on GFD and other numerical methods shows very good agreement. The application of GFD method in coupled thermoelasticity problems has a high capability because it does not require a mesh generation. A comparison between the presented mesh-free GFD method and meshless local Petrov–Galerkin (MLPG) method shows a good agreement of the results.  相似文献   

12.
基于线性热弹性理论的基本方程,采用两个位移分量,两个应力分量,温度变量和一个热流分量作为状态变量,应用状态空间理论,建立了功能梯度材料轴对称圆板结构在动态热载荷作用下的状态方程,考虑了运动惯性项以及热传导过程中的耦合效应,根据微分求积法,将状态方程沿径向进行离散.采用Laplace变换和打靶法,数值求解了材料常数按幂率变化的周边固支圆板在热冲击下的热响应.为求解功能梯度结构三维热弹性瞬态响应提供了一种方法.分析了组分材料分布对功能梯度圆板的热响应行为,包括板内温度变化,横向挠度以及板内应力分量的影响规律.  相似文献   

13.
In the present paper, the coupled theory, Lord–?hulman theory, and Green–Lindsay theory are introduced to study the influence of a magnetic field on the 2-D problem of a fiber-reinforced thermoelastic. These theories are also applied to study the influence of reinforcement on the total deformation of an infinite space weakened by a finite linear opening Mode-I crack. The material is homogeneous and an isotropic elastic half-space. The crack is subjected to a prescribed temperature and stress distribution. Normal mode analysis is used to solve the problem of a Mode-I crack. Numerical results for the temperature, the displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field. A comparison between the three theories is also made for different depths.  相似文献   

14.
非饱和地基中Love波的传播特性   总被引:1,自引:0,他引:1  
基于非饱和多孔介质的波动方程,考虑了土中水,气体与土骨架之间的粘性耦合作用,建立了弹性半空间上非饱和土层中Love波的弥散方程。首先分析了饱和度与频率对非饱和孔隙介质中剪切波速的影响。然后运用数值方法得到了不同饱和度下土层中多种Love模态波的弥散特性和位移分布情况,并用图表的形式给出。数值计算结果表明,上覆非饱和土层中Love波的传播速度和衰减系数不仅具有频散性,而且与土层的饱和度有关。在不同饱和度时的高模态(n≥2)的Love波的截止频率值不同。此外,讨论了饱和度对Love波水平位移幅值的影响。  相似文献   

15.
In this paper, the dispersion and energy dissipation of thermoelastic plane harmonic waves in a thin plate bounded by insulated traction-free surfaces is studied on the basis of three generalized theories of thermoelasticity. The frequency equations corresponding to the symmetric and antisymmetric modes of vibration of the plate are obtained. Some limiting and particular cases of the frequency equations are then discussed. Results obtained in three theories of generalized thermoelasticity are compared. The results for the coupled thermoelasticity can be obtained as particular cases of the results by setting thermal relaxations times equal to zero. Numerical evaluations relating to the lower modes of the symmetric and antisymmetric waves are presented for an aluminum alloy plate.  相似文献   

16.
In this article, two theories of the generalized thermoelasticity Green-Naghdi theory (of type II and III) are applied, as well as the coupled theory to study the effect of magnetic field and rotation under influence of gravity on 2D problem of a fibre-reinforced thermoelastic. The normal mode analysis is used to obtain the expressions for the temperature, displacement components and the thermal stresses distributions. The resulting formulation is applied for two different concrete problems. The first concerns the case of a punch moving across the surface of semi-infinite thermoelastic half-space subjected to appropriate boundary conditions. The second deals with a thick plate subjected to a time-dependent heat source on each face. Numerical results are illustrated graphically for each problem considered. A comparison is made with the results predicted obtained by the two theories in the presence and absence of magnetic field, rotation and gravity field.  相似文献   

17.
沈景凤  张翠  刘方 《复合材料学报》2019,36(4):1017-1028
基于热弹性耦合理论,对处于热载荷下的Al-Al2O3功能梯度材料(FGM)薄壁旋转碟片进行研究。根据FGM构造理论结合碟片轴对称特性,得到其力学特性全场分布。分别采用函数构造方法和热耦合传导方程推导得到模型所处温度场,并加以分析对比。建立了统一温度场的热耦合本构方程,并根据平面应力情况下热弹性材料力学特性基本原理,拟合确定其物性系数。通过微分求积方法(DQM)求解不同温度场下不同FGM构造形式模型的位移控制方程。结果表明:常温下,热耦合本构方程可以退化到胡克定律;经典热弹性理论与热弹性耦合理论下的碟片径向位移误差可达41.7%;热弹性耦合理论的结果随温度非线性变化,这种变化趋势也体现在大量科学实验中;碟片外表面温度变化、转速和所处的温度场显著地影响其热弹性场。   相似文献   

18.
C. L. Li  Q. Han  Y. J. Liu 《Acta Mechanica》2016,227(6):1711-1725
This paper represents a modified formulation of the wave finite element (WFE) method for propagating analysis of thermoelastic waves in a hollow cylinder without energy dissipation. The 2D-high-order spectral element with the Gauss–Legendre–Lobatto integration is applied into the WFE method, which produces the diagonal mass matrix. Based on the assumption of harmonic displacement fields by Fourier series expansion, the general discretization wave equation is simplified from the 3D problem to 2D. Dispersion properties of elastic wave propagation in the hollow cylinder are computed considering the choice of the spectral element orders, and the results indicate the high efficiency and high accuracy of the modified formulation compared with that of the software Disperse. Then, using the modified formulation, the thermoelastic dynamic equation of the cylinder is derived from the generalized thermoelasticity theory. The propagation of the thermoelasticwave (including two kinds of wave modes) in the cylinder without energy dissipation is discussed in differentcases. Finally, wave structures along the radial direction of thermoelastic wave modes are shown at thenondimensional frequency 1.25, which can be used for the recognition of different modes.  相似文献   

19.
王金梅  李映辉 《振动与冲击》2013,32(14):209-214
研究了温度场与位移场相互耦合时,轴向运动粘弹性夹层梁的横向振动特性。基于Euler-Bernouli梁理论和Kelvin粘弹性材料本构关系,建立了轴向运动粘弹性夹层梁横向振动控制方程;考虑材料变形与传热的相互影响,得到相应的热力耦合状态下轴向运动粘性夹层梁的耦合控制方程。采用Galerkin截断得到相应的热力耦合动力系统。用数值方法分析了相关热参数对梁振动频率的影响。  相似文献   

20.
In this article, the Lord–Shulman (L–S) theory with one relaxation time and coupled theory are applied to study the influence of reinforcement on the total deformation of a rotating thermoelastic half-space and the interaction with each other. The problem of a thermal shock has been solved numerically using normal mode analysis. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically for both L–S and coupled theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号