首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
纳秒脉冲微细电化学加工的理论及试验   总被引:2,自引:1,他引:1  
根据电化学反应原理,探讨纳秒脉冲电化学加工的特点及其实现微细加工的机理.建立纳秒脉冲微细电化学加工的理论模型,并分析电解液浓度、加工间隙、脉冲参数和加工电压等因素对微细电解加工的影响作用.构建微细电化学加工系统,包括微细加工机床、纳秒脉冲电源、电解液循环系统、运动控制部分和加工检测部分.试验研究了超短脉冲的电压幅值和脉冲宽度对侧面加工间隙的影响,结果表明减小脉冲宽度和降低加工电压可以提高微细电解加工的精度.在自制的微细电化学机床上,实现工具电极和工件微结构的连续加工.将加工间隙控制在5 μm以内,加工出中间有20 μm×30 μm×30 μm棱台的微型腔和30 μm槽宽的十字形孔,分析加工起始点对成形精度的影响,并提出解决方法.试验证明纳秒脉冲微细电解加工可以很好地满足微机电系统(Micro electromechanical system,MEMS)微器件的加工要求.  相似文献   

2.
高频窄脉冲微细电解加工实验研究   总被引:1,自引:0,他引:1  
加工间隙是电解加工的核心工艺参数,利用在45钢薄片上打微细孔,通过实验分析来探索高频、窄脉冲微细电解加工中频率、电压和电解液浓度对加工间隙及电极截面和加工稳定性的影响规律。  相似文献   

3.
超短脉冲电流微细电解加工技术研究   总被引:4,自引:2,他引:4  
利用电化学腐蚀方法,在自制的电解加工机床上连续实现微细工具电极的制作和工件的加工,通过试验研究了超短脉冲的电压幅值和脉冲宽度对侧面加工间隙的影响。结果表明,减小脉冲宽度,降低加工电压,可以提高微细电解加工的精度。利用优化的加工参数,进行了微小孔加工、微细直写加工以及成形电极微细加工的实验。  相似文献   

4.
在微细电解线切割加工过程中,工具线电极与工件之间的加工间隙在微米量级,因此,电解加工产物的及时输运是微细电解线切割加工中极为关键的问题。提出在线电极进行轴向往复运动的同时叠加阳极低频微幅振动的方法,促进加工间隙内产物排出,提高加工精度与加工稳定性。探讨加工间隙内电解产物影响微细电解线切割加工精度的机理,研究线电极往复运动条件下阳极振动对加工间隙内产物排出效率的影响。试验结果表明提高阳极的振动频率和振动幅值可以改善微细电解线切割的加工精度和加工稳定性;阳极叠加振动较阳极无振动的切缝更宽、更均匀。采用优化参数加工出宽度4.28 μm的微缝、微槽以及方螺旋结构。  相似文献   

5.
基于线电极原位制作的微细电解线切割加工   总被引:1,自引:1,他引:0  
王昆  朱荻 《光学精密工程》2009,17(11):2738-2743
微细电解线切割加工是一种微细加工新方法。从理论上分析了线电极直径大小对微细电解线切割加工精度的影响,提出了原位制作微米尺度线电极的方法,并制作出直径5μm的钨丝线电极。通过电解线切割加工试验,加工出缝宽为20μm左右的微型桨叶结构和曲率半径在1μm以下的微细尖角结构。  相似文献   

6.
采用基于电化学腐蚀法制作直径80μm、长度3000μm的微细电极,分别使用微细圆柱电极和微细螺旋电极进行了加工实验,实验研究丧明微细螺旋电极在孔和槽的加工中比微细圆柱电极具有更快的加工速度以及更小的加工间隙.螺旋结构在加工中有助于排出加工间隙内电解产物,显著地提高了加工效率、加工精度及加工过程的稳定性.  相似文献   

7.
微细电解线切割加工的基础研究   总被引:1,自引:0,他引:1  
基于电化学原理,讨论了纳秒脉冲电流微细电解线切割加工的机理,建立了微细电解线切割加工数学模型;采用电化学腐蚀原理对微米尺度线电极进行在线制作,建立了微细电解线切割加工试验系统,并进行了微细电解线切割加工试验,切割出带90°直角的微结构,其切缝宽度为30μm。  相似文献   

8.
使用μ-spark2000机床对SiCp/AI复合材料进行电火花加工微细孔的工艺实验,分析了开路电压、电容、电极材料与加工速度和电极损耗之间的关系,总结了开路电压和电容对加工精度和表面粗糙度的影响规律,并成功加工出Ф53μm的微细阵列孔。  相似文献   

9.
高频窄脉冲电流微细电解加工   总被引:6,自引:2,他引:4  
微细电解加工是微细加工领域很有发展前景的微细加工技术之一。适合于微细电解加工的装置被研制出来, 它包括机床进给机构、线电极电火花磨削在线制作微细电极装置、短路检测模块、脉冲电源及其他一些辅助装置, 其中,高频窄脉冲电源是微细电解加工最重要的核心技术之一。根据微细电解加工的特点,设计了微细电解加工 MOSFET脉冲电源,该微能脉冲电源能很好地满足微细电解加工的要求。运用该微细电解加工装置进行加工试验, 在低的加工电压和低的钝化电解液浓度条件下,利用高速旋转的微细电极加工微小孔和像小铣刀一样进行微细电解铣削加工微结构,得到了满意的工艺效果,因而进一步说明电解加工在微细加工领域很有发展潜力。  相似文献   

10.
徐惠宇  朱荻 《中国机械工程》2004,15(21):1912-1915
以某辐射状分布微细群缝结构的电解加工为研究对象,讨论了电解液、工件材料、加工速度等因素对加工精度的影响,结合研制的加工电极设计流场分布,优化加工参数,实现了以较高的效率加工出缝宽小至0.27mm的微细群缝结构,缝宽一致均匀,加工稳定性和重复性均好。  相似文献   

11.
Maskless electrochemical micromachining (EMM) is a prominent and unique surface texturing method to fabricate the arrays of microslots. This article investigates the generation of microslot arrays using maskless EMM method. The developed prototype maskless EMM setup consists of EMM cell, power supply connections, electrode holding devices and constricted vertical cross flow electrolyte system for the fabrication of microslot arrays economically. One textured cathode tool with SU-8 2150 mask is used to produce 22 microslot arrays. Influences of EMM process parameters including voltage, electrolyte concentration, inter electrode gap, flow rate and machining time on the machining performance that is, width overcut, depth and surface roughness (Ra) of microslot arrays are investigated. For lower width overcut, controlled depth, and lower surface roughness, machining with lower voltage, lower electrolyte concentration, lower inter electrode gap, higher flow rate and lower machining time are recommended. From the analysis, it is observed that the best machining conditions including inter electrode gap of 50?μm, applied voltage of 6 V, electrolyte concentration of 20?g L?1, flow rate of 5.35 m3 hr?1 and machining time of 1?min fabricate regular microslot array with mean width overcut of 24.321?μm, mean machining depth of 10.7?μm and mean surface roughness of 0.0101?μm.  相似文献   

12.
Electrochemical micromachining (EMM) could be used as one the best micromachining technique for machining electrically conducting, tough and difficult to machine material with appropriate machining parameters combination. This paper attempts to establish a comprehensive mathematical model for correlating the interactive and higher-order influences of various machining parameters, i.e. machining voltage pulse on/off ratio, machining voltage, electrolyte concentration, voltage frequency and tool vibration frequency on the predominant micromachining criteria, i.e. the material removal rate and the radial overcut through response surface methodology (RSM), utilizing relevant experimental data as obtained through experimentation. Validity and correctiveness of the developed mathematical models have also been tested through analysis of variance. Optimal combination of these predominant micromachining process parameters is obtained from these mathematical models for higher machining rate with acuuracy. Considering MRR and ROC simultaneously optimum values of predominant process parameters have been obtained as; pulse on/off ratio, 1.0, machining voltage, 3 V, electrolyte concentration, 15 g/l, voltage frequency of 42.118 Hz and tool vibration frequency as 300 Hz. The effects of various process parameters on the machining rate and radial overcut are also highlighted through different response surface graphs. Condition of machined micro-holes are also exhibited through the SEM micrographs in this paper. Pulse voltage pattern during electrochemical micromachining process has been analyzed with the help of voltage graphs. Irregularities in the nature of pulse voltage pattern during electrochemical micromachining have been observed and the causes of these irregularities are further investigated.  相似文献   

13.
A specially built electrochemical micromachining/pulsed electrochemical micromachining (EMM/PECM) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small and stable gap control unit, are developed to achieve accurate dimensions for spindle recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloride are applied in this study. The former electrolyte has better machinability than the latter because of its ability to change appropriately to the transpassive state without forming pits on the surface of the workpiece. It is easier to control the machining depth precisely by micrometer with pulse current than direct current. This paper also presents an identification method for the machining depth by the in-process analysis of the machining current and interelectrode gap size. The interelectrode gap characteristics, including pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analysed, based on the model and experiments. ID="A1"Correspondance and offprint requests to: E.-S. Lee, Department of Mechanical Engineering, Inha University, 253, Yonghyun-Dong, Nam-Gu, Incheon, 402–751, Korea. E-mail: leees@inha.ac.kr  相似文献   

14.
Electrochemical micromachining (EMM) is one of the best micromachining techniques for machining electrically conducting, tough, and difficult-to-machine materials with suitable machining parameter combinations. For the micro-fabrication of components like nozzle plate for ink jet printer head and delicate 3D electronic circuit board components, EMM is predominantly used. In this paper, the effect of process parameters such as such as electrolyte concentration, machining voltage, frequency, and duty cycle on the material removal rate (MRR) and overcut were studied using copper workpiece. According to Taguchi’s quality design concepts, an L18 orthogonal array is used. ANOVA is also performed to determine the most significant parameter that influences the EMM process. The optimum process parameters for lower overcut and higher MRR are found out and confirmation tests were carried out to validate the prediction. The confirmation test results show 19 and 20.78?% improvements of overcut and MRR, respectively, with respect to the initial parametric setting.  相似文献   

15.
The most used processes for generation of high aspect ratio microchannels are Nd: YAG laser technology on silica substrate and ultra violate lithography (UV-LIGA) process on metals. There are a few micromachining technologies such as micro mechanical milling, micro electro discharge machining (EDM) and electrochemical micromachining (EMM) for production of high-aspect-ratio micro features on highly stressed and anticorrosive metal like stainless steel. This paper discusses the micro fabrication of high aspect ratio micro features at the intended location on high strength stainless steel sheet of very small thickness to high thickness with highest average aspect ratio 14.33 achieved during microchannel generation by EMM with the help of coated microtool. Mathematical model relating aspect ratio with various parameters and machining conditions is derived to explore the ways to increase the aspect ratio of micro features. Experimental investigations were carried out to know the effect of vibration of microtool, frequency of pulsed voltage, microtool tip shape, thickness of work piece and non-conducting layer coated microtool on high aspect ratio micro features. Vibration of microtool with very small amplitude improved the stability of micromachining due to improved flow of electrolyte.  相似文献   

16.
Electrochemical micromachining (EMM) has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of microscopic-scale are required. EMM, which is not normally considered as a precision process, is presented in this paper. The application of voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with micrometer precision. In this paper, tool electrodes (5 μm in diameter, 1 mm in length) are developed by EMM and microholes are manufactured using these tool electrodes. Microholes with a size of below 50 μm in diameter can be accurately achieved by using ultrashort voltage pulses (1–5 μs).  相似文献   

17.
In this study, a two-step composite processing technology combining the EDM process and electrochemical etching is introduced to fabricate a micro-electrodes array. Firstly, rectangular columns measuring 0.2×0.2 mm are machined by the wire-EDM (electrical discharge machining) machine tool, then electrochemical etching is used to erode the microelectrodes array into cylindrical columns. Results show that microelectrodes ranging from hundreds of micrometers to several millimeters could be prepared. Then the machined microelectrodes are used as a cathode tool for electrochemical drilling of micro-hole arrays in electrochemical micromachining (EMM). Furthermore, various parameters affecting the performance of EMM are discussed in detail. Results indicate that the production of EMM improves by using multiple microelectrodes. The pulse current shows strong localization in micro-hole drilling and improves the machining accuracy.  相似文献   

18.
Electrochemical micromachining (EMM) has become more and more important in micro machining in recent years. Microelectrode as the tool of EMM is an essential cell in the machining process. In this study, microelectrodes with various end shapes are fabricated by different processing techniques. First, the different end shape forming methods for microelectrode, such as electrochemical etching, single electric discharge, and electrochemical micromachining are investigated. Second, microelectrodes with various end shapes fabricated above are simulated, analyzed, and then used in EMM process. At last, micro holes array with diameter of less than 10???m, three micro holes with no taper and a 3D microstructure are machined on metallic materials by above three types of microelectrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号