首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOEA/D是一种简单、高效的多目标优化算法,但在更新子问题时,会丢失部分优良个体,降低算法的收敛速度。针对上述不足,提出一种基于正交设计的自适应ε占优算法。新算法改进如下:(1)采用正交试验设计和连续空间量化初始化种群,使初始化群体能均匀分布;(2)设计一种自适应调整松弛变量改进的ε占优机制,并用它来更新Archive种群保存非劣解;(3)将精英策略引入到MOEA/D中,加快收敛速度。实验结果表明新算法较好地改善了MOEA/D算法的收敛性以及非劣解的分布性。  相似文献   

2.
多目标差分演化算法研究综述   总被引:1,自引:0,他引:1  
多目标差分演化算法是一种简单有效的演化算法,已引起学术界的广泛关注,并在许多领域得到应用。首先描述了差分演化算法的基本思想;接着分析了有代表性的多目标差分演化算法,并给出了改进多目标差分演化算法的一些措施;然后讨论了多目标差分演化算法的性能度量指标,并介绍了多目标差分演化算法的一些应用领域;最后,指出了多目标差分演化算法今后的研究方向。  相似文献   

3.
李康顺  左磊  李伟 《计算机应用》2016,36(1):143-149
为了克服传统差分演化(DE)算法在求解约束优化问题时出现的收敛性慢和容易陷入早熟等缺陷,提出一种新的基于单形正交实验设计的差分演化(SO-DE)算法。该算法设计了一种结合单形交叉和正交实验设计的混合交叉算子来提高差分演化算法的搜索能力;同时采用了一种改进的个体优劣比较准则对种群个体进行比较和选择。这种新的混合交叉算子利用多个父代个体进行单形交叉产生多个子代个体,从两者中选择优秀个体进行正交实验设计得到下一代种群个体。改进的个体优劣比较准则对不同状态下的种群采用不同的处理方案,其目的在于能够有效地权衡目标函数值和约束违反量之间的关系,从而选择优秀个体进入下一代种群。通过对13个标准测试函数和2个工程设计问题进行仿真实验,实验结果表明SO-DE算法求解的精度和标准方差都要优于HEAA算法和COEA/OED算法。SO-DE算法具有更高的精度以及更好的稳定性。  相似文献   

4.
针对粒了群算法求解多目标问题极易收敛到伪Pareto前沿(等价于单目标优化问题中的局部最优解),并且收敛速度较慢的问题,提出一种ε占优的自适应多目标粒子群算法(εDMOPSO)..在εDMOPSO算法中,每个粒子的邻居根据粒了的运行动态地组建,且粒了的速度小由其邻居中运行最好的粒予来调整,而是由其所有邻居共同调整.同时...  相似文献   

5.
基于正交设计的多目标演化算法   总被引:16,自引:0,他引:16  
提出一种基于正交设计的多目标演化算法以求解多目标优化问题(MOPs).它的特点在于:(1)用基于正交数组的均匀搜索代替经典EA的随机性搜索,既保证了解分布的均匀性,又保证了收敛的快速性;(2)用统计优化方法繁殖后代,不仅提高了解的精度,而且加快了收敛速度;(3)实验结果表明,对于双目标的MOPs,新算法在解集分布的均匀性、多样性与解精确性及算法收敛速度等方面均优于SPEA;(4)用于求解一个带约束多目标优化工程设计问题,它得到了最好的结果——Pareto最优解,在此之前,此问题的Pareto最优解是未知的.  相似文献   

6.
鄢靖丰  郭超峰  龚文引 《计算机工程》2012,38(3):187-188,192
提出一种适合求解约束问题的基于正交实验设计的差分演化算法。引入一种基于正交设计的杂交算子,并结合约束统计优生法产生最好子个体,采用决策变量分块策略,以减少正交实验次数,加快算法收敛速度。给出一种简单的多样性规则,以处理约束条件。提出基于非凸理论的多父体混合自适应杂交变异算子,以增强算法的非凸搜索能力和自适应能力。通过对13个标准测试函数进行实验,结果表明,该算法在解的精度、稳定性和收敛性上表现出较好的性能。  相似文献   

7.
针对动态多目标优化环境下寻找并跟踪变化的Pareto最优前沿和Pareto最优解集的难题,提出两个策略:自适应迁移策略和预测策略。自适应迁移策略是根据环境的变化自适应地插入迁移个体来提高算法种群的多样性,从而提高算法对动态环境的适应能力。预测策略是通过时间序列并加上一定的扰动来产生预测种群,来预测环境变化之后的Pareto最优解集,以达到对其快速跟踪的目的。通过两个策略在多目标差分演化算法上的应用来解决动态多目标优化问题。实验过程中,通过平均最优解集分布均匀度和平均决策空间世代距离等指标表明,基于自适应迁移策略和预测策略的多目标差分演化算法能够很好适应变化的环境,并能够快速找到Pareto最优解集。  相似文献   

8.
提出一种新的基于ε-支配关系的自适应多目标进化算法(AEMOEA)。在每次的进化中保留端点,并从端点集中选取一个作为父本,参加进化,弥补了ε-MOEA算法中端点易被丢掉的缺陷;在进化过程中根据存档动态地调整ε的取值,使解的分布更加均匀;当存档中个体过多时,运用ε-支配关系进行剪切,使其个体数处在合理水平。通过5个常用双目标测试函数的计算,验证了该算法在求解质量上优于ε-MOEA、NAGA-II以及SPEA-2等主流多目标算法。  相似文献   

9.
郑向伟  刘弘 《软件学报》2007,18(Z1):109-119
在求解多目标优化问题时,微粒群优化算法有容易陷于局部极值、函数评价次数多和受到维数限制等不足之处.提出了一种基于合作型协同和ε-占优的多目标微粒群算法(cooperative coevolutionary and ε-dominancebased multi-objective particle swarm optimizer,简称CEPSO).依据决策变量分解问题,采用多个子群分别优化各个子问题,并在更新粒子位置时采用均匀分布变异算子防止微粒群早熟收敛;在保存非劣解时,使用<  相似文献   

10.
多目标演化算法的收敛性研究   总被引:5,自引:1,他引:5  
基于群体搜索的演化算法求解多目标优化问题有独特的优势,多目标演化算法已有的研究大多为算法的设计和数值试验效果的比较,理论研究往往被忽视.该文讨论了多目标演化算法的收敛性问题,针对一种网格化的简单易于实现的多目标演化算法模型定义了多目标演化算法强收敛和弱收敛等概念,给出了判断算法收敛性的一般性条件;在变异算子为高斯变异、目标函数连续的条件下,证明了提出的算法强收敛.数值实验验证了算法的可行性和有效性.  相似文献   

11.
演化算法因其内在的并行行,在求解多目标优化问题时具有独特的优势。本文介绍多目标演化算法的基本原理,并详细讨论基于Pareto最优概念的多目标演化算法。  相似文献   

12.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。  相似文献   

13.
差分演化算法是一种简单而有效的全局优化算法。本文将差分演化算法用于求解多目标优化问题,给出了一种维持种群多样性的多目标差分演化算法。该算法采用正交设计法初始化种群,改进差分演化算子,从而有利于维持种群多样性,提高演化算法的搜索性能。初步实验表明,新算法能有效地求解多目标优化问题。  相似文献   

14.
基于Pareto-ε优胜的自适应快速多目标演化算法   总被引:1,自引:0,他引:1  
王江晴  杨勋 《计算机应用》2010,30(4):997-999
在多目标优化领域,如何快速地为决策者提供合理、可行的解决方案尤为重要,为此,给出了多目标优化问题的一种新解法。定义了一种Pareto-ε优胜关系的概念,将此概念引入多目标优化问题中,设计了一种新的基于ε-优胜的自适应快速多目标演化算法。计算机仿真表明,该算法可以明显改善求解多目标优化问题时的寻优过程,能适应实际应用环境下快速、有效的决策要求。  相似文献   

15.
多目标优化的演化算法   总被引:57,自引:2,他引:57  
谢涛  陈火旺  康立山 《计算机学报》2003,26(8):997-1003
近年来.多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点.多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域.该文在比较与分析多目标优化的演化算法发展的历史基础上,介绍基于Pareto最优概念的多目标演化算法中的一些主要技术与理论结果,并具体以多目标遗传算法为代表,详细介绍了基于偏好的个体排序、适应值赋值以及共享函数与小生境等技术.此外,指出并阐释了值得进一步研究的相关问题.  相似文献   

16.
作为一种简单而有效的新兴计算技术,差分演化算法(DE)已受到学术界和工程界的广泛关注,并且已经在多峰函数优化,数据过滤,多目标优化等十九个大方向上取得了许多成功应用。为此,对围绕差分演化算法的相关背景,原理、特点、改进等方面进行简单介绍.Hookeand Jeeves方法是一种经典的局部搜索算法,将其与差分演化算法结合来求解多目标优化问题,提高了解的收敛质量,因而从整体上提高了算法的性能,并且测试结果也说明了该算法的可行性。  相似文献   

17.
郭金翠  邹金欣  孙鹏辉  庄艳 《计算机应用》2011,31(10):2880-2882
设计了一种宽波束、宽带宽的右旋圆极化卫星天线。首先使用动态多目标演化算法(DDEA)在并行计算平台上进行了全局范围内的搜索,然后使用正交试验设计和基于有限元法的HFSS软件,进行了局部范围内的均匀细化搜索,进一步改善天线增益。改进的天线,波束符合要求,可节省卫星馈电功率。  相似文献   

18.
一种基于树结构排序的多目标优化演化算法   总被引:1,自引:0,他引:1  
多目标优化演化算法(MOEA)是一种新的解多目标优化问题(MOP)的有效算法。针对大多数MOEA采用的表示解优劣的Ranking技术存在的问题,该文提出了一种新的表示方法———树结构来表示解的关系。实验证明这种方法很好地达到Pareto最优,有效地保持解的多样性,而且收敛速度快。  相似文献   

19.
为了提高非劣解向Pareto最优前沿收敛的速度及进一步提高解的精度,在设计了一种新的杂交算子并改进了NSGA-Ⅱ的拥挤操作的基础上,提出了一种基于分级策略的多目标演化算法。数值实验表明,新算法能够非常高效地处理高维的最优前沿为凸的、非凸的和不连续前沿的多目标测试函数,得到的非劣解具有很好的分布性质。但在处理高维的具有太多局部最优前沿的多峰函数时极易陷入局部最优前沿。  相似文献   

20.
基于空间距离的多目标差分进化算法*   总被引:1,自引:0,他引:1  
在经典差分进化的基础上,提出了一种基于空间距离的多目标差分进化算法(SD-MODE),与目前经典算法NSGA-Ⅱ和ε-MOEA 进行比较,结果表明该算法拥有良好的分布性,同时也较好地改善了收敛性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号