首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
将纳米Fe3O4磁性颗粒加入由PMDA和ODA制备的PAA聚合物溶液中,通过静电纺丝法制备PAA/Fe3O4复合纤维。利用扫描电镜(SEM)和透射电镜(TEM)对复合纳米纤维的微观形貌和Fe3O4在纤维中的分布进行了观察,采用X射线衍射仪(XRD)验证了Fe3O4在复合纳米纤维中的存在,通过磁性实验分析了纳米复合材料的磁性能,同时使用红外光谱仪对纳米复合材料的化学结构进行了分析。结果表明,所制备PAA/Fe3O4磁性纳米纤维成型良好,Fe3O4磁性颗粒已分散在纤维中,与PAA是物理复合,材料具有一定磁性,为进一步制备聚酰亚胺磁性复合纳米纤维做了有益的探索研究。聚合物磁性复合材料由于其独特的物理化学性能及超顺磁性,有着广阔的应用前景。  相似文献   

2.
采用共沉淀法在硅酸钠溶液中将磁性Fe3O4纳米粒子进行包裹处理,得到表面包覆SiO2薄层的复合粒子,并通过XRD、TEM、穆斯堡尔谱、磁性能测试等手段对包裹样品进行了表征。实验结果表明,共沉淀法制备的复合粒子由磁性Fe3O4粒子核和外部的SiO2包裹层组成,复合粒子的粒径分布为介于20~30nm,包裹后的样品具有典型的铁磁性特征,比饱和磁化强度Ms为23.250emu/g。与单一的Fe3O4纳米颗粒相比,磁性SiO2/Fe3O4复合粒子除了具有良好的磁学性能、较小的矫顽力、较小的剩余磁化强度外,有着非常好的耐酸性和抗氧化性。  相似文献   

3.
采用高能球磨法制备Fe3 O4/ZrO2复合磁性颗粒,对复合磁性颗粒的包覆机理进行深入研究.通过XRD、FT-IR、VSM、SEM等测试手段对样品的结构、光学性质、磁性能和形貌等进行表征,并将各性能进行定性和定量分析.结果表明:当ZrO2含量为2.13%时,Fe3O4/ZrO2复合材料摩擦因数的波动最稳,其硬度达最大值10.01 GPa;此外,随着ZrO2含量的增加,样品的比饱和磁化强度和剩余磁化强度明显降低,复合磁性颗粒的粒径越来越大,并且出现ZrO2颗粒的团聚现象.对于表面活性剂,相比于PEG2000,CTAB能使Fe3 O4/ZrO2复合磁性颗粒桥接更紧密、性能更好.因此,在表面活性剂CTAB的修饰下,ZrO2加入量为2.13%时,可使Fe3 O4/ZrO2复合磁性颗粒有较好的综合性能.  相似文献   

4.
肿瘤热疗用CNTs/Fe_3O_4热种子复合材料的制备及表征   总被引:1,自引:0,他引:1  
采用化学共沉淀结合水热处理的方法,控制一定的反应条件,制备了微波肿瘤靶向热治疗用碳纳米管/四氧化三铁(CNTs/Fe3O4)热种子材料,并对所得的复合材料进行了相应的检测。实验结果表明:Fe3O4纳米小粒子在CNTs的表面包覆均匀,具有普遍性CNTs/Fe3O4复合材料具有纯Fe3O4相似的超顺磁性,当CNTs的质量分数为10%时,其比饱和磁化强度为64.53emu/g,矫顽力为14.03Oe,可以实现CNTs在磁场中的定向;CNTs/Fe3O4复合材料在0~5GHz范围内具有较好的吸波性能,当CNTs的质量分数为4%时,CNTs/Fe3O4复合材料的吸收峰在2.2GHz附近,反射率达-19dB,频宽为1G左右。因此,CNTs/Fe3O4复合材料有望作为热种子材料用于肿瘤热疗。  相似文献   

5.
采用水热法制备碳纳米管(MWCNT)/四氧化三铁(Fe3O4)复合材料,运用透射电子显微镜、X射线衍射仪、振动样品磁强计及网络矢量分析仪等,对复合材料的微观结构、磁性能及电磁波吸收性能(8.2~12.4 GHz,X波段)进行研究和分析。结果表明,磁性Fe3O4纳米颗粒能够较好地包覆在MWCNTs表面上,并且随着反应混合液中Fe2+和Fe3+浓度的增加,MWCNT/Fe3O4复合材料中的Fe3O4含量增加,MWCNT/Fe3O4复合材料的磁性能增强;当反应混合液中的Fe2+和Fe3+的浓度分别为0.02和0.04 mol/L时,MWCNT/Fe3O4复合材料的电磁波吸收性能最佳,具体表现为吸收峰峰值最低,吸收频宽最宽。  相似文献   

6.
用微乳液聚合法制备了粒径均匀的聚苯乙烯-丙烯酸高分子微球P(St-co-AA),与共沉淀法所制纳米Fe3O4通过静电作用,使两种微球自组装成高磁含量的磁性微球[Fe3O4/P(St-co-AA)].采用XRD、TEM、SEM、IR等对样品进行表征,采用VSM对样品进行磁性能测试.结果表明P(St-co-AA)平均粒径约为70nm,表面含有羧基;所得磁粉为Fe3O4单相,平均粒径约为10nm.磁性能测试表明,当外加磁场为1.5×106/π(A/m)时,磁化强度达到饱和,饱和磁化强度为69A·m2·kg-1;自组装所制高分子磁性微球为球形,平均粒径约800nm,磁粉含量为15.8%.研究表明,pH值、搅拌等对复合磁性微球的形成有重要影响.  相似文献   

7.
采用液相还原的方法,在碱性环境下使用FeCl2.4H2O和氧化石墨作为前驱体,制备Fe3O4微球附载的石墨烯复合材料。通过调节氧化石墨和铁盐的质量比制备得到不同组分的Fe3O4/石墨烯复合粉体。使用场发射电子扫描显微镜(FESEM)、X射线衍射仪(XRD)、振动样品磁强计(VSM)和四探针电阻仪等仪器分析了产物的形貌、物相、磁性能和导电性能。结果表明Fe3O4/石墨烯复合粉体中Fe3O4微球在石墨烯表面分散均匀,且Fe3O4结晶良好,为立方晶系的尖晶石型。该复合粉体具有高的磁性能和良好的导电性能,饱和磁化强度和电导率分别达到72emu/g和0.53S/cm。  相似文献   

8.
以FeCl3·6H2O和FeSO4·7H2O为铁源,采用化学共沉淀法制备纳米级Fe3O4磁颗粒,并用油酸钠对其进行表面包覆;将包覆后的Fe3O4磁颗粒在真空干燥箱中加热氧化,通过氧化时间的控制得到部分氧化的γ-Fe2O3/Fe3O4复合磁性颗粒以及完全氧化的γ-Fe2O3磁性颗粒;以硅油为载液制备出Fe3O4磁流体A、γ-Fe2O3磁流体B、部分氧化的γ-Fe2O3/Fe3O4复合磁流体C。研究发现Fe3O4磁颗粒尺寸分布较窄,尺寸的单分散性好,平均粒径在10nm左右,整体上呈现为类球形;Fe3O4磁颗粒部分和完全氧化制得的磁颗粒的粒径和形貌并无明显变化,粒径仍为10nm左右,整体上也呈现为类球形。测试结果表明,样品A、B和C的饱和磁化强度分别达到12.45,14.25和25.08A·m2/kg,且它们在外加磁场下均呈现出良好的各向异性。  相似文献   

9.
静电纺丝法制备PAN/Fe3O4磁性纳米纤维   总被引:1,自引:0,他引:1  
采用化学共沉淀法制备纳米四氧化三铁,选用曲拉通X-100为分散剂,利用静电纺丝法制备PAN/Fe3O4磁性纳米复合材料。X射线衍射仪(XRD)验证了四氧化三铁在复合纳米纤维中的存在。同时使用扫描电镜(SEM)和透射电镜(TEM)对复合纳米纤维的微观形貌和Fe3O4在纤维中的分布进行了观察,利用热重(TGA)对纳米复合材料的热稳定性进行分析;通过磁性实验分析了纳米复合材料的磁性性能。结果表明,所制备PAN/Fe3O4磁性纳米纤维成型良好,且Fe3O4磁性颗粒在纤维中分散均匀,其与PAN是物理复合。纳米复合材料具有一定磁性,并可由磁性颗粒的加入量进行控制。  相似文献   

10.
磁性复合膜的制备及其磁致变形性能   总被引:1,自引:0,他引:1  
Fe3O4和Fe2O3分散加入PVA中制备新型智能凝胶-磁性复合膜。对磁性复合膜作形貌和红外光谱分析。对不同配比制备的磁性复合膜进行磁场磁致变形性能的对比。并利用磁性复合膜在配方比不同时对磁场的变形不同的特性做了机器人手指探讨磁性复合膜的远景应用。结果表明,磁性复合膜的偏转大小决定于Fe3O4或Fe2O3的含量和磁场的大小。冷冻和常温制备方法对磁性复合膜的变形大小没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号