首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Physicochemical properties of acorn (Quercus palustris) starch were studied. Acorn starch granules were spherical or ovoid, with diameters ranging from 3–17 μm. Acorn starch exhibited A‐type X‐ray diffraction pattern, an apparent amylose content of 43.4% and absolute amylose content of 31.4%. Relative to other A‐type starches, acorn amylopectin had a comparable weight‐average molar mass (3.9×108 g/mol), gyration radius (288 nm) and density (16.3 g mol−1nm−3). Average amylopectin branch chain‐length corresponded to DP 25.5. Onset gelatinization temperature was 65.0°C and peak gelatinization temperature was considerably higher (73.7°C). The enthalpy change of gelatinization was very high compared to non‐mutant starches (20.8 J/g). An amylose‐lipid thermal transition was not observed. Starch retrograded for 7 d at 4°C had very high peak melting temperature (54.2°C) relative to other A‐type starches. Final (260 RVU) and setback (138 RVU) viscosity of an 8% acorn starch paste was high relative to other starches and pasting temperature was 71.5°C.  相似文献   

2.
Chemical and physical properties of kiwifruit (Actinidia deliciosa var. ‘Hayward’) starch were studied. Kiwifruit starch granules were compound, irregular or dome‐shaped with diameters predominantly 4–5 µm or 7–9 µm. Kiwifruit starch exhibited B‐type X‐ray diffraction pattern, an apparent amylose content of 43.1% and absolute amylose content of 18.8%. Kiwifruit amylopectins, relative to other starches, had low weight‐average molecular weight (7.4×107), and gyration radius (200 nm). Average amylopectin branch chain‐length was long (DP 28.6). Onset and peak gelatinization temperatures were 68.9°C and 73.0°C, respectively, and gelatinization enthalpy was high (18.5 J/g). Amylose‐lipid thermal transition was observed. Starch retrograded for 7 d at 4°C had a very high peak melting temperature (60.7°C). Peak (250 RVU), final (238 RVU) and setback (94 RVU) viscosity of 8% kiwifruit starch paste was high relative to other starches and pasting temperature (69.7°C) was marginally higher than onset gelatinization temperature. High paste viscosities and low pasting temperature could give kiwifruit starch some advantages over many cereal starches.  相似文献   

3.
Starch isolated from five grain tef (Eragrostis tef) varieties was characterized and compared with commercial maize starch. Grain tef starch is formed of compound granules, comprising many polygonal shape (2—6 μm in diameter) simple granules. The crude composition is similar to that of normal native cereal starches. The amylose content ranges from 24.9—31.7%. Gelatinisation temperature range was 68.0—74.0—80.0 °C, typical of tropical cereal starches, and resembling the temperature range of rice starch. The mean intrinsic peak viscosity (269 RVU), breakdown viscosity (79 RVU), cold paste viscosity (292 RVU) and setback viscosity (101 RVU) determined were considerably lower than that of maize starch. Tef starch has higher water absorption index (WAI) (mean 108%) and lower water solubility index (WSI) (mean 0.34%) than maize starch.  相似文献   

4.
Starches from various origins (normal corn, waxy corn, high‐amylose corn, normal rice, waxy rice, potato and tapioca) were fractionated by density‐gradient ultracentrifugation at 124,000×g, using a gradient of Nycodenz (0–40%, w/w) in 90% dimethyl sulfoxide (DMSO). The fractions of different densities were collected from a centrifuge tube, and then analyzed by the phenol‐sulfuric acid method and iodine‐binding test. Amylose and amylopectin were clearly separated by the density‐gradient centrifugation within 6 h of centrifugation in the total carbohydrate vs. density profile. The amylose content in the starches, measured from the centrifugation for 6 h, agreed with the values reported in the literature, and the content of intermediate fraction (5–13%) was also measured. Amylopectin quickly reached a density region (1.22–1.23 g/mL) with a sharp and stable peak, whereas amylose showed a band in a broad density range, moving toward higher density as the centrifugation continued. The buoyant density of amylose became similar to that of amylopectin after extensive centrifugation. Because the sedimentation rate of amylose was much lower than that of amylopectin, both starch chains are effectively fractionated in the gradient medium, and the iodine‐binding property of the fractionated starches provides valuable information on the chain conformation of starch.  相似文献   

5.
Physicochemical, structural and morphological characteristics of maize and cassava starches treated with 0.36% concentrated HCl in anhydrous methanol at 54ºC for 1–8 h were analyzed and compared. Average yield of modified starch was about 97% for both starches. The solubility of the acid‐methanol treated starches increased with temperature and after 3 h of treatment reached 93% for maize starch and 97% for cassava starch at 95ºC. After 8 h of treatment, the average size of the cassava starch granules decreased from 14.9 to 11.1 µm. The action of acid‐methanol on the maize starch was more subtle, reducing the granule average size from 11.8 to 11.3 µm. Scanning electron micrographs showed that the granule surfaces were rough and exfoliated after treatment suggesting exocorrosion that was more evident for cassava starch. From GPC, it was noted that amylose and amylopectin were partially degraded during treatment. Starch crystallinity gradually increased with duration of treatment. The amylose content decreased from 21.4 to 18.8% and from 26.3 to 23.0% and the intrinsic viscosity was reduced from 2.36 to 0.21 and from 1.85 to 0.04 for cassava and maize starches, respectively. The gelatinization temperatures increased whereas pasting viscosities decreased with reaction time, especially for cassava starch. These results suggested that the attack of acid‐methanol, which was more effective on cassava starch granules, occurred preferentially in the amorphous areas located in the granule periphery and composed of amylose and amylopectin.  相似文献   

6.
Recombinant amylosucrase (200 U/mL) from Neisseria polysaccharea was used to produce digestion‐resistant starch (RS) using 1–3% (w/v) corn starches and 0.1–0.5 M sucrose incubated at 35°C for 24 h. Characterization of the obtained enzyme‐modified starches was investigated. Results show that the yields of the enzyme‐modified starches were inversely proportional to the original amylose contents of corn starches. After enzymatic reaction, insoluble RS contents increased by 22.3 and 20.7% from 6.9% of waxy and 7.7% of normal corn starches, respectively, using 3.0% starch as acceptor and 0.3 M sucrose as donor, while amylomaize VII showed the lowest increase (8.5%) in RS content. The crystalline polymorph of these enzyme‐modified starches resulted in the B‐type immediately after enzymatic reaction. The enzyme‐modified starches displayed higher melting peak temperatures (85.6–100.6°C) compared to their native starch counterparts (70.1–78.4°C). After enzymatic reaction, pasting temperature increased in waxy (71.9 → 77.6°C) and normal corn starches (75.3 → 80.6°C), and the peak viscosity of waxy corn starches increased from 264 to 349 RVU, whereas that of normal corn starches decreased from 235 to 66 RVU.  相似文献   

7.
Morphological, crystal, and physicochemical properties, such as AM content, swelling power, solubility, and pasting properties of starches isolated from three different Shanyaodou (the bulbils of Dioscorea opposita Thunb., named Huaishanyao, Xichangmaoshanyao, and Maoshanyao, respectively) were investigated. The yield of starches was in the range 12.5–20.8% (dry starch/fresh whole bulbils). The AM content of Shanyaodou starches ranged from 33.3 to 36.7%. The shape of the three bulbils starch granules varied from round to oval or elliptic. The mean particle diameter of starch granules varied from 20.17 to 26.34 µm. Shanyaodou starches exhibited a C‐type XRD pattern and the degree of crystallinity was in the range 31.0–34.9%. The pasting peak viscosity, trough viscosity, and final viscosity of Shanyaodou starches ranged from 291.1 to 414.7, 210.8 to 227.0, and 350.0 to 359.2 rapid visco units (RVU), respectively, and the pasting temperature was in the range 83.6–87.3°C. The results showed that some of the Shanyaodou starches could be used in foods production as a thickening agent. The simple method of extraction and the high yield of starch from Shanyaodou might be attractive for production of Shanyaodou starch.  相似文献   

8.
The extent of corn starch dispersibility and the relative molecular solubility of amylose and amylopectin in methyl sulfoxide (DMSO) were determined. Granular corn starches with <l, 25, 53, and 70% amylose were dispersed in 0–100% DMSO (in water) solutions at 30°C for 30 min. Maximum dispersibility for all starches (98%) was obtained when 90% DMSO/10% water was used; regular (normal) dent corn starch was equally dispersed in solutions with 88–94% DMSO. Molecular solubility, the presence of individual molecules of amylose and amylopectin, of starches was also measured (after centrifugation and filtration) by high performance size-exclusion chromatography (HPSEC). Starches were dispersed in 90% DMSO and heated for 10 min at temperatures of 35–120ºC. At low temperatures, high coefficients of variation resulted from additional DMSO solubilization after treatment. At 120ºC, 70% amylose starch was >90% solubilized, while waxy starch was only 47% solubilized. When starches were treated for 18–89 h in 90ºC DMSO, solubility stopped increasing after 67 h. High amylose starch (70%) was mostly solubilized, but 53% amylose, waxy and regular starches could only be fully solubilized after exposure to shear. Amylopectin molecules appeared more susceptible to shear induced depolymerization than amylose. The percent amylopectin in the high amylose starches reflected that as determined by iodine binding analysis and the manufacturer; while the percent amylopectin in regular starch was too low (manufacturers: 75%, HPSEC: 65%). Undispersed components were mostly amylopectin. Since amylose is fully solubilized, however, the HPSEC can be used to quickly determine percent amylose in starch.  相似文献   

9.
Physicochemical and in vitro digestibility characteristics of starches isolated from six cultivars of mung bean (Vigna radiata L.) were studied. Significant differences (p < 0.05) were observed between the cultivars with respect to amylose content (29.9–33.6%), relative crystallinity (29.0 to 31.7%), particle diameter (16.2–17.1 µm) and molecular weight of amylopectin (260–289 × 106 g/mol). The scanning electron micrographs revealed the presence of large oval to small round shape granules with average particle diameter of 16.2–17.1 µm. The X‐ray diffraction pattern was of the C‐type. The enthalpies of gelatinization and retrogradation were 8.9–10.3 and 4.6–6.3 J/g, respectively. The amounts of slowly digesting and resistant starch of mung bean followed the order: PBM‐1 > SML‐32 > ML‐613 > SML‐134 > ML‐267 > ML‐5 and ML‐5 > ML‐267 > SML‐134 > ML‐613 > SML‐32 > PBM‐1, respectively. The six starches exhibited significant (p < 0.05) differences in their pasting parameters. Correlation analysis showed that amylose content, granule diameter and relative crystallinity values were important in determining thermal, pasting and in vitro digestibility of starches.  相似文献   

10.
Maize shows a significant genetic diversity, giving origin to a great number of varieties, hybrids, and genotypes. Recently, the pigmented corn varieties have received increased interest because of their anthocyanin contents. Although starch is the major component of the pigmented corn, only a few studies have been conducted on this constituent. The aim of this work was to evaluate the physicochemical properties and structural characteristics of starch isolated from six blue maize varieties grown in Mexico. The apparent amylose content ranged between 23.3 and 33.9%. The blue maize starches had an A‐type X‐ray diffraction pattern with similar crystallinity levels. Different gelatinization temperatures and enthalpy values were recorded, exhibiting different retrogradation tendencies (between 36.9 and 60.1%). The pasting parameters showed that the pasting temperature varied between 74.7 and 84.1°C, the maximum peak viscosity between 83.2 and 111.2 RVU units, and the setback viscosity between 26 and 38 RVU units. Structural differences were observed in the degree of branching, molar mass, and gyration radius. In view of their different physicochemical and structural characteristics, each of the blue maize starch varieties studied could have their own specific applications.  相似文献   

11.
Lotus and kudzu starches have been used as functional foods in East Asia for thousands of years. The objective of this work is to investigate the starches’ basic physicochemical properties. The amylose content was the highest (30.61%) in lotus starch. The average particle size (diameters) was 50.27, 24.08 and 38.97 μm for lotus, kudzu and corn starches, respectively. Lotus starch exhibited a B‐type X‐ray diffraction pattern and kudzu starch exhibited a C‐type pattern. Kudzu starch was characterised by a maximum viscosity immediately followed by a sharp decrease in viscosity, while the lotus starch was characterised by a plateau when the maximum viscosity was reached.  相似文献   

12.
Fourteen hull‐less barley cultivars, collected from four major cultivated areas in China, were employed to investigate the structural and physicochemical properties of their starches in this study. Relatively wide variations in physicochemical properties of the starches were observed. Amylose content ranged from 23.1% to 30.0%, swelling power and water solubility index ranged from 12.8 to 19.9 g g?1 and 12.7% to 23.7% respectively. Peak viscosity was from 170 to 346 Rapid Visco Unit (RVU), peak temperature (Tp) of starch gelatinisation was from 55.6 to 61.8 °C and enthalpy of starch retrogradation ranged from 0.3 to 3.1 J g?1. Weight‐based chain‐length proportions of fa, fb1, fb2 and fb3 in amylopectins ranged from 21.65% to 24.95%, 44.48% to 49.44%, 15.56% to 17.19% and 9.83% to 16.66% respectively. Correlation analyses showed that amylose content was inversely related to pasting parameters and enthalpy of gelatinisation. Pasting properties and amylopectin structures were the most important parameters to differentiate starch properties among different hull‐less barley cultivars in this study. This work will be useful for exploring applications of Chinese hull‐less barley starches in food and non‐food industries.  相似文献   

13.
This study aimed at evaluating the influence of screw speed (250–600 rpm), barrel temperature (100–160 °C) and water content (16.4–22.5%) on rapidly digestible (RDS), slowly digestible (SDS) and resistant (RS) starch levels of waxy, normal and high‐amylose maize starches. In native starches, an increase in amylose content was correlated with lower SDS content. After extrusion, this trend was reversed. Both waxy and normal maize starches became rapidly digested. However, for normal maize starch, some SDS fraction remained. In contrast, the high‐amylose maize starch showed a significant increase in digestibility and an increase in SDS content from 20.4% in the native starch up to 27.5% after extrusion. This high level of SDS may be attributed to the presence of some remaining granular structures and formation of crystalline orders, which have slow digestion properties.  相似文献   

14.
The effects of blanching on physicochemical properties of flours and starches prepared from two varieties of sweet potatoes (Mun‐Kai and Negro) were studied and compared. The pasting temperature and peak viscosity of starches, respectively, were 74 and 80 °C and 381 and 433 RVU. The pasting temperature (74.0‐94.8 °C) of flours was greater than that of starch, depending on the variety and blanching process. However, the peak viscosity (ca. 103‐120 RVU) of flours was lower than that of the corresponding starches. Partial gelatinization of starch granules was observed as a result of a 1‐min blanching. Composition of starch and flour was found to affect swelling power and solubility. The starch content of starches, flours from unblanched sweet potato and flours from 1‐min blanched sweet potatoes were 97; 66.3 and 74.9; as well as 36.6 and 40.4%, respectively. Amylose content of flours and starches varied from 17.2‐20.8%.  相似文献   

15.
Resistant starch has drawn broad interest for both potential health benefits and functional properties. In this study, a technology was developed to increase resistant starch content of corn starch using esterification with citric acid at elevated temperature. Waxy corn, normal corn and high‐amylose corn starches were used as model starches. Citric acid (40% of starch dry weight) was reacted with corn starch at different temperatures (120–150°C) for different reaction times (3–9 h). The effect of reaction conditions on resistant starch content in the citrate corn starch was investigated. When conducting the reaction at 140°C for 7 h, the highest resistant starch content was found in waxy corn citrate starch (87.5%) with the highest degree of substitution (DS, 0.16) of all starches. High‐amylose corn starch had 86.4% resistant starch content and 0.14 DS, and normal corn starch had 78.8% resistant starch and 0.12 DS. The physicochemical properties of these citrate starches were characterized using various analytical techniques. In the presence of excess water upon heating, citrate starch made from waxy corn starch had no peak in the DSC thermogram, and small peaks were found for normal corn starch (0.4 J/g) and Hylon VII starch (3.0 J/g) in the thermograms. This indicates that citrate substitution changes granule properties. There are no retrogradation peaks in the thermograms when starch was reheated after 2 weeks storage at 5°C. All the citrate starches showed no peaks in RVA pasting curves, indicating citrate substitution changes the pasting properties of corn starch as well. Moreover, citrate starch from waxy corn is more thermally stable than the other citrate starches.  相似文献   

16.
Starch from four cultivars (CDC Xena, CDC Flip 97-133C, CDC 418-59, CDC ICC 12512-9) of chickpea (cicer arietinum L.) grown in Saskatchewan, Canada was isolated and variability in composition, morphology, molecular structure and physicochemical properties was evaluated. The yield of starch was in the range 32.0–36.8% on a whole seed basis. The starch granules were oval to spherical with smooth surfaces. The granule size distribution ranged from 5 to 35 μm. The free lipid, bound lipid, total amylose and the amount of amylose complexed with native starch lipids ranged from 0.04% to 0.08%, 0.21% to 0.46%, 33.9% to 40.2% and 9.1% to 15.9%, respectively. There was no significant difference in branch chain length distribution of amylopectin among the starches. The X-ray pattern was of the C-type. The relative crystallinity was in the range 31.3–34.4%. Swelling factor and amylose leaching in the temperature range 50–90 °C ranged from 1.6% to 25.9% and 8.61% to 36.1%, respectively. All four starches exhibited nearly identical gelatinization temperatures. However, the enthalpy of gelatinization was in the range 11.2–13.1 J/g, respectively. The starches differed significantly with respect to peak viscosity (3223–4174 cp), breakdown viscosity (394–1308 cp) and set-back (3110–4281 cp). Starches were hydrolyzed by acid to nearly the same extent. The amount of rapidly digestible, slowly digestible and resistant starch contents ranged from 10.9% to 15.7%, 48.5% to 60.2% and 24.1% to 40.6%, respectively.  相似文献   

17.
The starches separated from thirteen different black gram cultivars were investigated for physicochemical, thermal, morphological and pasting properties. Amylose content, swelling power, solubility and water binding capacity of starches ranged between 30.2–34.6%, 16.0–22.3 g/g, 14.8–17.3% and 73.5–84.5%, respectively. The diameter of starch granules, measured using a laser‐light scattering particle‐size analyzer, varied from 12.8 to 14.3 μm in all black gram starches. The shape of starch granules varied from oval to elliptical. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) determined using differential scanning calorimetry, ranged between 66.1–71.3, 71.0–76.2, 75.9–80.4°C and 6.7–9.4 J/g, respectively. Pasting properties of starches measured using the Rapid Visco Analyser (RVA) also differed significantly. Pasting temperature, peak viscosity, trough, breakdown, final viscosity and setback were between 75.8–80.3°C, 422–514, 180–311, 134–212, 400–439 and 102–151 Rapid Visco Units (RVU), respectively. Turbidity values of gelatinized starch pastes increased during refrigerated storage. The relationships between different properties were also determined using Pearson correlation coefficients. Amylose content showed a positive correlation with swelling power, turbidity and granule diameter. Swelling power showed a negative correlation with solubility and setback. To, Tp and Tc showed positive correlation with turbidity, pasting temperature and were negatively correlated to peak and breakdown viscosity.  相似文献   

18.
The comprehension of the structure of starch granules is important for the understanding of its physicochemical properties. Native and sour cassava starches after being analyzed with respect to their pasting properties and baking expansion capacity, were treated with 2.2 N HCl at 38 °C for a maximum of nine days. The starch granules remaining after lintnerization were analyzed for amylose content and intrinsic viscosity, by X‐ray diffraction, scanning electron microscopy and chromatographic analysis. The results indicated that the acid hydrolysis on all starches occurred in two steps. The first one, with high hydrolysis rate, was characterized by a quick degradation of the amorphous part of the granules whereas the second step, with lower hydrolysis rate, was characterized by a higher resistance of the organized areas of the granules to acid treatment. Most of the amylose chains were found in the amorphous areas of starch granules only a small percentage was involved in the crystalline regions. The microscopic and chromatographic analysis demonstrated that the acid hydrolysis was not able to disrupt the entire granular crystalline structure. Fermented starch showed amylose and/or amylopectin chain fractions resistant to pullulanase, probably due to structural alterations during fermentation.  相似文献   

19.
Endosperm starch isolated from an amylose‐free waxy mutant hull‐less barley line, Shikoku Hadaka 97, had an amylose content of 0.3% and higher swelling power than ordinary waxy barley cultivars/lines with amylose contents of 2.2—6.5%. A highly significant correlation was observed between amylose content and swelling power among waxy barley starches. No clear differences were detected in the chain‐length distribution profiles or thermal properties between the amylose‐free starch and ordinary waxy starch. The chain‐length distribution profile of waxy barley starch was slightly different from that of normal barley starch. Gelatinization temperatures and gelatinization enthalpy of waxy barley starch were higher than those of normal barley starch. Significant correlations were observed between amylose content and thermal properties of starch samples analyzed. Waxy barley starch stained with a concentrated iodine‐potassium iodide solution showed a ghost‐like appearance.  相似文献   

20.
The effects of different levels of sodium hypochlorite (1–4 g/100 g dry solids active chlorine) on the physicochemical, pasting, and structural properties of tamarind kernel starches were investigated. The isolated starch had low traces of non-starch components, such as protein, fat, and ash, indicating its purity. Both the carboxyl and carbonyl contents in the oxidized starches increased significantly with the increase in chlorine concentration. The introduction of carboxyl and carbonyl groups resulted in significantly lower amylose content. The swelling power of oxidized starches was significantly lower than native starch and the solubility values increased when the chlorine concentration increased at all the measured temperatures. The percentage of light transmittance increased progressively after oxidation. Pasting properties showed that in treatments at high active chlorine concentrations, the peak viscosity decreased more drastically than in treatments at low chlorine concentration, indicating a greater degradation of starch. The morphology of the starches was not altered after oxidation. After oxidative treatment no change in the X-ray diffraction pattern was observed but intensity of the peaks increased. Therefore, tamarind kernel being underutilized raw material, has a great potential as a non-conventional source of starch and desirable properties of this starch can be enhanced by oxidation for applications in food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号