首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the preparation of fine BaTiO3 powders under hydrothermal conditions, the reaction mechanism was interpreted through solid-state kinetic analysis of the Johnson-Mehl-Avrami plot. In this experiment reactants were dissolved and consumed to spherical particles of 50 nms from aggregation of several nanometer-sized particles. The particulate formation of BaTiO3 underwent a 1st-order hydrolysis-condensation reaction with phase-boundary transition in the early stage of the reaction regardless of the initial concentration of the feedstock. However, as the concentration of nutrients was reduced, dissolution followed by precipitation became dominant, and a diffusioncontrolled reaction proceeded. When the concentration of nutrients was reduced to an extent that was not high enough to sustain supersaturation, the reaction was controlled by solidification for encapsulation of aggregated particles, inside of which the diffusion-controlled reaction slowly proceeded.  相似文献   

2.
In this paper we report a kinetic study of the electro-oxidation of hydrazine catalyzed by vitamin B12 pre-adsorbed on an ordinary pyrolytic graphite electrode. Kinetic parameters were determined by linear sweep voltammetry and rotating-disk electrode polarization curves. The order of the reaction is 1 in OH ions and Tafel plots give slopes of 80 mV/decade. A possible redox-catalysis mechanistic scheme is proposed.  相似文献   

3.
Porous polymeric adsorbents based on styrene were studied for the uptake of vitamin B12 from aqueous solutions under static conditions. The effect of various parameters on the uptake was studied. The uptake of vitamin B12 by polymeric adsorbents and their subsequent elution from the polymer matrix was also studied under dynamic conditions to assess their utility for the isolation of this compound. Results obtained point to their potential use for the recovery of vitamin B12.  相似文献   

4.
A modified technique of rapid expansion of supercritical solutions (RESS) was applied to incorporate essential oil extracted from Atractylodes macrocephala Koidz into liposomes. In the modified RESS process, both the liposomal materials and the essential oil were dissolved in the mixture of supercritical carbon dioxide (SC-CO2)/ethanol and then the solution was sprayed into an aqueous medium through a coaxial nozzle to form liposomes suspension. The encapsulation performance of liposomes could be controlled by changing expansion processing conditions such as pressure, temperature of SC-CO2 and the amount of ethanol. The entrapment efficiency, drug loading and average particle size of liposomes were found to be 82.18%, 5.18% and 173 nm, respectively, under the optimum conditions of at a pressure of 30 MPa, a temperature of 338 K and a ethanol mole fraction in SC-CO2 [(x(CH3CH2OH)] of 15%. The formed liposomes appeared as double-layered colloidal spheres with a uniform and narrow particle size distribution. The physicochemical properties of liposomes including entrapment efficiency, dissolution rate and stability were complied with the provisions of Chinese pharmacopoeia. All these results indicate that the modified RESS technique is an innovative way for self-assembly of liposomes incorporation of multi-components extracted from Chinese traditional medicines in the SC-CO2.  相似文献   

5.
The transamination reaction of l-phenylalanine with pyruvate as catalyzed by the artificial transaminase formed with synthetic bilayer aggregates was examined in aqueous media under mild kinetic conditions. Each catalyst system was constructed with a combination of a synthetic peptide lipid, a hydrophobic vitamin B6 derivative, and metal ions. Modification of the active site in the present artificial transaminase was performed by changing a combination of molecular components constituting the catalytic system. While the catalytic activity was scarcely influenced by differences in aggregate structure, single- or multi-walled bilayer, and in copper-(II) concentration, molecular structures of the hydrophobic vitamin B6 and an amino acid residue of the peptide lipid had significant effects on the reactivity.  相似文献   

6.
We report on the electrocatalytic activity of immobilized coenzyme B12 and vitamin B12 (as aquocobalamin) for the electrooxidation of l-cysteine and their effects on the electrochemical reversibility of the l-cysteine/l-cystine redox couple, a crucial biological system. Cyclic voltammograms of coenzyme B12 adsorbed on a graphite electrode show that upon the reductive elimination of the 5′-deoxyadenosyl group from the cobalt center, at approximately −1.1 V, the electrochemical response of the modified electrode becomes similar to that of aquocobalamin. The electrochemically pretreated coenzyme B12 shows a high electrocatalytic activity for the electro-oxidation of l-cysteine at physiological pH that has never been observed before with the commonly used metallophthalocyanine catalysts. Also, its activity is slightly higher than that exhibited by aquocobalamin.  相似文献   

7.
Supercritical processes for drug delivery system design have attracted considerable attention recently. This present work investigates the application of a supercritical antisolvent coating process for controlled drug release design. Hydrocortisone as the host drug particles and poly(lactide-co-glycolide) (PLGA) as the polymer carrier were selected as the model system for this purpose. In this research the drug particles were suspended in a polymer solution of dichloromethane. The suspension was then sprayed into supercritical CO2 as an antisolvent. A parallel study of co-precipitation of the drug and polymer using the same supercritical antisolvent process at the same operating conditions was performed for comparison with the coating process. SEM images were used to characterize the drug particles before and after and the assay analysis was carried out using HPLC. The coated particles and co-precipitated particles were evaluated in terms of encapsulation efficiency and drug release profiles. The major advantage of this new approach is the ability to physically coat very fine (< 30 μm) particles without having to dissolve them in an organic solvent. It was found that higher polymer to drug ratios produced higher encapsulation efficiencies and the coated drug particles did show sustained release behavior. The co-precipitation of the drug and polymer (at the same operating conditions), however, did not exhibit any sustained release.  相似文献   

8.
Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1:1 and 1:3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100°C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80°C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1:3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R 2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.  相似文献   

9.
Our study reports on the development of novel biodegradable microparticles prepared by a spray-drying technique using the poly(lactide-co-glycolide) (PLGA), a biodegradable polymer for the controlled delivery of cefixime. Cefixime is a water-soluble drug having short biological half-life of 3 h. The behavior of PLGA in controlling drug release responses of cefixime microparticles was investigated. The resultant microparticles were characterized by scanning electron microscopy, encapsulation efficiency, particle-size distribution, X-ray diffraction, and in vitro dissolution studies (pH 7.2). To investigate the type of release mechanism that occurs, dissolution data were plotted according to different kinetic models. The in vitro release profiles from microparticles followed first order and Higuchi model release. Antibacterial studies were carried out using a standard agar diffusion method to determine the effectiveness of formulations in inhibiting the growth of microorganisms. It showed that the released drug from the formulations was effectively inhibiting the growth of microorganisms with the minimum inhibitory concentration of < 1 µg/mL. Data revealed the potential of formulations for treatment of infections caused by various microorganisms. Thus, this study demonstrates the high potential of the spray-drying technique to obtain stable cefixime microparticles with good encapsulation efficiency to achieve a delivery profile that would yield the controlled released level of the drug over a long period of time (74 h).  相似文献   

10.
Vitamin B1 (thiamine hydrochloride, VB1) intercalated into montmorillonite (MMT), which was characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), and thermo gravimetric analysis (TGA). The adsorption of VB1 on MMT increased with increase in reaction temperature. The adsorption isotherms were fitted by the Langmuir model. About 34 and 64% of the intercalated VB1 was released within 10 h, in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) respectively at 37 ± 0.5 °C. The release profile of VB1 followed the Higuchi kinetic model and the diffusion-controlled mechanism. During in vitro release experiments VB1 was released from MMT–VB1 steadily as a function of pH.  相似文献   

11.
Recent studies have clearly shown that vitamin D3 is a crucial regulator of the female reproductive process in humans and animals. Knowledge of the expression of vitamin D3 receptors and related molecules in the female reproductive organs such as ovaries, uterus, oviduct, or placenta under physiological and pathological conditions highlights its contribution to the proper function of the reproductive system in females. Furthermore, vitamin D3 deficiency leads to serious reproductive disturbances and pathologies including ovarian cysts. Although the influence of vitamin D3 on the reproductive processes of humans and rodents has been extensively described, the association between vitamin D3 and female reproductive function in farm animals, birds, and fish has rarely been summarized. In this review, we provide an overview of the role of vitamin D3 in the reproductive system of those animals, with special attention paid to the expression of vitamin D3 receptors and its metabolic molecules. This updated information could be essential for better understanding animal physiology and overcoming the incidence of infertility, which is crucial for optimizing reproductive outcomes in female livestock.  相似文献   

12.
(1) Background: Vitamin B12 deficiency in Caenorhabditis elegans results in severe oxidative stress and induces morphological abnormality in mutants due to disordered cuticle collagen biosynthesis. We clarified the underlying mechanism leading to such mutant worms due to vitamin B12 deficiency. (2) Results: The deficient worms exhibited decreased collagen levels of up to approximately 59% compared with the control. Although vitamin B12 deficiency did not affect the mRNA expression of prolyl 4-hydroxylase, which catalyzes the formation of 4-hydroxyproline involved in intercellular collagen biosynthesis, the level of ascorbic acid, a prolyl 4-hydroxylase coenzyme, was markedly decreased. Dityrosine crosslinking is involved in the extracellular maturation of worm collagen. The dityrosine level of collagen significantly increased in the deficient worms compared with the control. However, vitamin B12 deficiency hardly affected the mRNA expression levels of bli-3 and mlt-7, which are encoding crosslinking-related enzymes, suggesting that deficiency-induced oxidative stress leads to dityrosine crosslinking. Moreover, using GMC101 mutant worms that express the full-length human amyloid β, we found that vitamin B12 deficiency did not affect the gene and protein expressions of amyloid β but increased the formation of dityrosine crosslinking in the amyloid β protein. (3) Conclusions: Vitamin B12-deficient wild-type worms showed motility dysfunction due to decreased collagen levels and the formation of highly tyrosine-crosslinked collagen, potentially reducing their flexibility. In GMC101 mutant worms, vitamin B12 deficiency-induced oxidative stress triggers dityrosine-crosslinked amyloid β formation, which might promote its stabilization and toxic oligomerization.  相似文献   

13.
A new phase separation phenomenon was observed in which the perfluorooctanesulfonate ion (PFOS) and calcium ion form an ion‐pair associator and the sedimented liquid phase occurs from the homogeneous aqueous solution. This phenomenon was observed in the neutral pH region at room temperature (25 °C). The optimum concentration conditions for the reagents were [PFOS]T = 7 × 10−3 mol dm‐3 and [Ca2+]T = 1.1 mol dm‐3. When these findings were applied to the homogeneous liquid–liquid extraction of vitamin B12, the extraction percentage (E) was 83% and the concentration ratio (ie Va/Vs, where Va is the volume of the aqueous phase and Vs is the volume of the sedimented liquid phase) was a maximum of 149. The recovery of vitamin B12 was achieved by adding the propanol–acetone (20 : 80 v/v%) mixed solvent to the sedimented liquid phase; the vitamin B12 precipitated and was filtered. Both the PFOS and Ca2+ were removed by dissolution in the mixed solvent. The recovery percentage of vitamin B12 was 78%. © 1999 Society of Chemical Industry  相似文献   

14.
In the present study, we investigated the use of thiamine chloride hydrochloride (vitamin B1)-modified ZnO nanoparticles (ZnO-VB1 NPs) to reinforce polycaprolactone matrix. The stable and bioactive PCL/ZnO-VB1 nanocomposites were fabricated with the combination of ultrasonication and solution casting methods. Transmission electron microscope results indicated that the ZnO-VB1 NPs were uniformly dispersed in the matrix. The nanocomposites showed high hydroxyapatite formation (high bioactivity) in the simulated body fluid. The nanocomposites with 2?wt% of the modified nanoparticles were found to have highest mechanical strength. The nanocomposites with more nanofiller concentrations exhibited high wettability.  相似文献   

15.
A dense ceramic composite in the system B–C–Si has been synthesized by the reaction sintering technique based on infiltration of silicon melt at 1550 °C under vacuum into a porous compact made of boron carbide and petroleum coke powder. The final material is around 99% dense and microstructurally contains B4C, SiC and Si as the major phases. The B4C-phase reacted at its interface with Si-phase, which is explained in terms of dissolution of Si in the carbide phase.  相似文献   

16.
The ingress of water into copolymers of 2‐hydroxyethyl methacrylate (HEMA) and tetrahydrofurfuryl methacrylate (THFMA) loaded with either one of two model drugs, ie vitamin B12 or aspirin, was studied at 310 K using three‐dimensional nuclear magnetic resonance (3D NMR) imaging. The poly(HEMA) was loaded with 5 wt% of the drugs. From the imaging profiles it was observed that incorporation of vitamin B12 into the polymers rich in HEMA resulted in crack formation at the interface between the rubbery region and the glassy core on sorption of water, although these cracks were ‘healed’ behind the diffusion front. However, for the copolymers with low HEMA contents and for those containing aspirin, no evidence for similar crack formation was found. For the copolymers loaded with 5 wt% of aspirin or vitamin B12 the values of the water diffusion coefficients, determined by curve‐fitting the relative water concentration profiles from magnetic resonance imaging (MRI) measurements, were found to be smaller than those obtained from a mass uptake study. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Rare earth-containing bioactive glasses (RE-BGs) have been poorly explored in the biomaterials field, although RE has optical, nuclear, and magnetic properties that could be used in different biomedical applications. In order to verify whether these glasses can be promising as biomaterials, we studied the dissolution, bioactivity, and cytotoxicity of RE-BGs based on the SiO2–Na2O–CaO–P2O5–RE2O3 (RE = Gd, Yb) system. The glasses were obtained by melting-quenching and their particle size was determined by laser diffraction. Their dissolution behavior was studied in Tris-HCl, while bioactivity was performed in simulated body fluid solution under physiological conditions during several periods. The cytotoxicity test was performed using glass-derived conditioned medium and mesenchymal stem cell derived from deciduous teeth. The dissolution results showed that the glasses dissolved under two different kinetics, which are lower for rare earth-containing glasses, due to the more covalent character of Si–O–RE bonds. The bioactivity results evidenced that all glasses showed bioactivity after 24 hours. However, gadolinium and ytterbium promoted a more calcium phosphate deposition, which contrasts with the slower dissolution kinetics of rare earth-containing glasses. All the glasses were considered biocompatible, showing cell viability higher than 80%. The overall results showed that RE-BGs are promising materials for applications that require bioactivity and/or biocompatibility.  相似文献   

18.
BACKGROUND: There are two different routes for vitamin B12 biosynthesis, which results in discrepancies and uncertainties of the dissolved oxygen (DO) concentration for vitamin B12 fermentation. In this paper, the DO control strategy was explored for industrial vitamin B12 fermentation by Pesudomonas denitrificans in 120000‐L fermenter. RESULTS: A DO‐stat strategy was first successfully scaled up from a 9000 L fermenter to a 120 000 L fermenter. Then a multi‐stage DO control strategy was further established in the 120 000 L fermenter, in which the DO level was shifted from 8–10% (20–48 h) to 2–5% (49–106 h) and below 2% (107–168 h) by gradually reducing the rate of aeration and agitation. As a result, 198.80 mg L?1 of vitamin B12 was obtained, which was significantly higher than those obtained under the fermentations with one‐stage DO control. CONCLUSIONS: The comparatively low DO level was favorable for vitamin B12 biosynthesis, but it would have an extremely negative effect on cell growth. Compared with the low DO level maintained at all times of the fermentation process, a multi‐stage DO control strategy could not only increase the biomass but also improve vitamin B12 biosynthesis. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
l-Ascorbic acid was encapsulated in biopolymers to enhance (1) its encapsulation efficiency and (2) drug release ratio using different pH media. To achieve this goal, we used polycaprolactone (PCL), polyethylene glycol (PEG), and sodium alginate (SA) to prepare drug delivery system and spray dryer as our tool to obtain microspheres. In this manner, the importance of the study was to produce a stable and effective drug encapsulation system by PCL–PEG–SA polymer mixture by spray dryer. First we evaluated the effects of drying conditions and composition on the microencapsulation formulation and in the next stage the most uniformly distributed particles were selected and l-ascorbic acid was loaded. After that, drug encapsulation and drug release studies were performed. Drug release experiments were conducted at different pH solutions (pH 2.5, 7.4, and 9.6). Finally, drug release kinetics was determined by widely used equations to describe the degradation kinetics; zero-order, first-order, Higuchi, Hixson–Crowell, and Korsmeyer–Peppas. Furthermore, l-ascorbic acid release mechanism from microspheres was also determined. The release profiles of three microspheres obeyed the earlier developed kinetic models for performing possible release mechanisms. The Korsmeyer–Peppas model best described each release scenario.  相似文献   

20.
In the present investigation, solution casting method was used for the preparation of nanocomposite (NC) films. At first, the surface of ZrO2 nanoparticles (NPs) was modified with vitamin B1 (VB1) as a bioactive coupling agent to achieve a better dispersion and compatibility of NPs within the poly(vinyl chloride) (PVC) matrix. The grafting of modifier on the surface of ZrO2 was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis (TGA). Finally, the resulting modified ZrO2 (ZrO2–VB1), was used as a nano-filler and incorporated into the PVC matrix to improve its mechanical and thermal properties. These processes were carried out under ultrasonic irradiation conditions, which is an economical and eco-friendly method. The effect of ZrO2–VB1 on the properties and morphology of the PVC matrix was characterized by various techniques. Field emission scanning electron microscopy and transmission electron microscopy analyses showed a good dispersion of fillers into the PVC matrix with the average diameter of 37–40 nm. UV–Vis spectroscopy was used to study optical behavior of the obtained NC films. TGA analysis has con?rmed the presence of about 7 wt% VB1 on the surface of ZrO2. Also, the data indicated that the thermal and mechanical properties of the NC films were enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号