首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In DS‐CDMA systems with the successive interference cancellation (SIC) technique, there are K! possible decoding orders for K active users and the decoding order has considerable impact on system performance. Once the constraints on the received powers of mobile stations and the bit‐energy‐to‐interference‐power‐spectral‐density ratio requirements are satisfied under some decoding order of SIC, the system is feasible. Otherwise, if the constraints are violated under all possible decoding orders, the system is infeasible. It is highly time‐consuming to examine the system feasibility directly by using the usual exhaustive search method (ESM) for a system with even moderate number of users. In this paper, we propose an efficient approach for examining the feasibility of DS‐CDMA systems with imperfect SIC. The proposed approach has significantly lower computational complexity than that of ESM and thus benefits the quick decisions of admission control and/or scheduling, which are essential for Quality of Service provisioning in DS‐CDMA systems. Furthermore, we theoretically prove that the system under the resultant decoding order obtained by the proposed approach is able to achieve the lowest outage probability among all possible decoding orders. We conduct extensive simulation experiments, and the numerical results validate our analysis and demonstrate the effectiveness of our approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we propose and analyse parallel CCI multistage cancellation by combining RAKE and selection diversity. In order to account for channel variations, adaptive implementation of decision thresholds at the RAKE output is suggested. It is shown to provide significant improvement over either hard or soft decision techniques especially in the near‐far situation. Investigation of the system robustness to imperfect channel parameter estimation is also presented. The communication channel is modelled as slowly varying Rayleigh fading discrete multipath channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
This paper examines the performance of a reduced rank minimum mean square error (MMSE) receiver‐based direct sequence code division multiple access (DS‐CDMA) system. For such system, when a large processing gain is employed, substantial time is consumed in computing the filter tap weights. Many schemes for reducing the complexity of the MMSE have been proposed in recent years. In this paper, computational complexity reduction of the MMSE receiver is achieved by using the K‐mean classification algorithm. The performance of the uncoded and coded systems are investigated for the full rank MMSE receiver and reduced rank MMSE receiver and results are compared in terms of bit error rate at different loading levels in both AWGN and fading channels. A system with the matched filter (MF) receiver is also presented for the purpose of comparison and an analytical pair‐wise error bound for the coded system is derived. In the adaptive implementation of the receivers, results show that good performance is achieved for the reduced rank receiver when compared to the full rank receiver in both coded and uncoded systems, while in the optimum implementation of the tap weights, the reduced dimension receiver performance experiences degradation when compared to the full rank scheme. Over the band‐limited channels considered, results for the reduced rank receiver also reiterate the fact that higher code rates tend to yield lower BER than that of low rate codes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A simplified group interference cancelling (IC) approach is investigated for asynchronous direct‐sequence code‐division multiple access on flat fading channels. The technique employs grouping by estimated signal‐to‐noise‐plus‐interference ratio (SNIR), and interference cancellation is performed blockwise, for a subset of the total number of users. We consider long random spreading codes, and include the effects of imperfect amplitude, carrier phase, and delay estimation. Performance of the technique shows SNIR gains of several dB, and concomitant improvements in error probability, with lower computational complexity than that of parallel or serial interference cancelling techniques. We also show that our SNIR expressions are applicable to both the AWGN and flat fading channels, and for moderate near–far conditions. In addition, we determine optimal group sizes for our technique, where optimality is in terms of average error probability over all users. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A computationally efficient and practically deployable adaptive reference code‐based multiple access interference (MAI) cancellation scheme, in which the conventional transmitter/receiver architecture is minimally modified only at the receiver (and/or transmitter) end, is proposed for direct sequence code division multiple access (DS‐CDMA) communication. Upon numerical and theoretical analyses, the proposed communications system is seen to always outperform the existing conventional communications system. The theoretical analyses and results as presented are generally useful and applicable to any situation wherein IS95 pseudo noise (PN) codes are employed towards multiple access. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the issues related with conventional near–far user pairing in non‐orthogonal multiple access. Performance effects of near–far pairing on regions with negligible channel gain differences between users are investigated. These regions occur when pairing is performed between cell center and cell edge users, thus leaving the cell mid users to be either paired with each other or kept unpaired. Pairing these mid users with each other causes successive interference cancelation (SIC) performance degradation resulting in capacity reduction for these users. On the other hand, leaving these mid users unpaired perfectly avoids the SIC issue but makes these users unable to benefit from the capacity gains provided by non‐orthogonal multiple access. Therefore, two user pairing strategies have been proposed that can provide capacity gains to almost all the users by accommodating them in pairs, while avoiding or minimizing the mid users pairing problem. A generalized M‐users pairing scheme is also proposed. Simulations have been performed to investigate the performance of proposed schemes for both perfect and imperfect SIC receiver scenarios in comparison with conventional pairing where the mid users are kept paired with each other. Simulation results show that proposed schemes achieve high capacity gains, especially when imperfect SIC is considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The two‐dimensional (2D) block spread code division multiple access (CDMA) can avoid the uplink multiple‐access interference with low‐complexity single‐user detection in a slow fading channel and, therefore, is very attractive. In the 2D spreading, orthogonal variable spreading factor (OVSF) is used for spreading; an important problem is how to efficiently assign the limited resource of OVSF codes to users with different data rates, while meeting the requirement of quality of service in a multi‐cell environment. In this paper, it is shown that the code reuse can improve the code reuse efficiency and the proposed code reuse scheme combined with code assignment algorithm can allow flexible multi‐rate uplink transmission. The computer simulation confirms that the proposed code assignment algorithm improves the code reuse efficiency while achieving lower blocking probability than traditional CDMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This work presents a space‐frequency prefiltering scheme for slowly time‐varying TDD MC‐CDMA downlink communications with multiple antennas at the base station (BS). Unlike the conventional spatially uncorrelated block fading channel model, both channel variation in each packet and spatial correlation are considered in the design. In the TDD mode, the mobile terminals (MTs) transmit training signals at the end of each uplink packet. In the following downlink packet, the BS computes the signal weights on different antennas and subcarriers for each MT in each symbol period based on the channel state predicted from the received training signals. The goal is to minimize the total required transmit power while keeping the received signal‐to‐interference‐plus‐noise ratio (SINR) as the target for each MT. Moreover, the maximum packet length for satisfying the SINR requirements has been determined. The results indicate that the total required transmit power can be reduced by a lower mobile speed or more BS antennas. As a result, the maximum packet length can be extended in virtue of the power reduction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we proposed a new method based on expanding subspace algorithm and finite alphabet characteristics, for blind estimation of the users' spreading sequences in the multiuser direct sequence code division multiple access system in the presence of the multipath channels. In the proposed scheme, we show that the estimation of the users' overall channels in the direct sequence code division multiple access system is equivalent to the impulse response estimation of the multi‐input multi‐output finite impulse response channels. Our proposed approach is based on the successive estimation of the columns of the equivalent multi‐input multi‐output finite impulse response channels from the lowest degree columns to the highest degree ones. Accordingly, each user's overall channel that is the convolution of the original multipath channel and the spreading sequence is estimated. Then we extract PN sequences from the overall channel using finite alphabet characteristics of the spreading sequence chips for each user. According to simulation results, our proposed scheme outperforms the conventional methods in that it does not require symbol synchronization and does not have channel constraints (for example, AWGN and single user system) in the multipath channels.  相似文献   

10.
王艺  吴俊  吴伟陵 《通信学报》2000,21(4):8-12
本文研究了在同步直接序列码分多址 (DS/CDMA)系统中 ,横向均衡器抑制多址干扰 (MAI)的能力 ,在最优Wiener解的基础上 ,证明了横向均衡器的性能优于解相关检测 ,计算结果验证了以上结论。  相似文献   

11.
Multicarrier code division multiple access (MC‐CDMA), is a promising multiplexing technique for future communication systems. In this study, we employ the well‐known Walsh‐Hadamard spreading codes for synchronous downlink transmission of MC‐CDMA systems. The spreading codes allow that the frequency diversity to be efficiently exploited. However, multipath propagation may cause orthogonality among users is distorted, and this distortion produces multiple access interference (MAI). To eliminate this effect, we propose a pre‐filtering‐based MC‐CDMA system which uses a pre‐filtering technique at the transmitter and an equal gain combining (EGC) scheme at the receivers, respectively. Our proposed pre‐filtering technique transforms the transmitted signals so that the MAI can be eliminated, and the EGC scheme weights the signals received from all subcarriers so that channel distortions can be compensated. Furthermore, the proposed technique can calculate the transmitted power over all subcarriers to satisfy the required quality of service of each user and archive MAI‐free. In this paper, performance in terms of bit error rate is analyzed; in comparison with the EGC, orthogonal restoring combining, and maximal ratio combining schemes at receiver, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the sensitivity to system imperfections of a reference symbol assisted multi-stage successive interference cancelling (RAMSIC) receiver. Reverse link of a CDMA system with binary antipodal modulation and coherent detection is considered. Performance of systems using either biphase and quadriphase spreading is compared under different operating conditions. Analysis of a conventional matched filter receiver operating on an AWGN channel reveals that when the number of users is small (such that the multiple access interference cannot be accurately modelled as Gaussian), quadriphase spreading has a significant advantage over biphase spreading. This advantage, however, disappears when the number of users per sector is large (of the order necessary for the multiple access interference to be considered Gaussian). Results for the RAMSIC receiver with quadriphase spreading, on the other hand, show that for hexagonal cell geometry with path loss exponent of 4 and without any forward error correction coding, the traffic capacity is between 1.17 and 1.67 times that of the IS-95. These numbers represent a significant increase over those obtained with biphase spreading. Further investigation with nonidealized cell geometries and other path loss exponents also shows substantial capacity improvement over that of conventional correlator receivers. Performance losses due to nonideal transmitter power amplifier gating, imperfect power control and synchronization errors in the RAKE receiver are also determined. The results for biphase spreading show that for path loss exponent of 4, imperfect amplifier gating causes relatively minor decrease in the traffic capacity, while no such effect is observed for path loss exponents of 2 and 3. As expected, relaxing of power control for both biphase and quadriphase spreading has a similar capacity reducing effect. In spite of these two effects the resultant capacity is still significantly higher than that with the conventional matched filter receiver. Capacity increase with quadriphase over biphase spreading is between 1.4 and 2.0 times. Chip synchronization errors of the order to be expected in a properly designed conventional CDMA system have only minimal effect on performance. Therefore, we conclude that conventional synchronization algorithms should perform adequately with successive interference cancelling receivers considered in the paper.  相似文献   

13.
In this paper, we investigate multi‐group linear turbo equalization using single antenna interference cancellation (SAIC) techniques to mitigate the intercell interference for multi‐carrier code division multiple access (MC‐CDMA) cellular systems. It is important for the mobile station to mitigate the intercell interference as the performance of the users close to cell edge is mainly degraded by the intercell interference. The complexity of the proposed iterative detector and receiver is low as the one‐tap minimum mean square error (MMSE) equalizer is employed for mitigating the intracell interference, while a simple group interference canceller is used for suppressing the intercell interference. Simulation results show that the proposed iterative detector and receiver can mitigate the intercell interference effectively through iterations for both uncoded and coded signals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Multi‐carrier technologies in general, and OFDM and MC‐CDMA in particular, are quickly becoming an integral part of the wireless landscape. In this first of a two‐part survey, the authors present the innovative transmit/receive multi‐carrier implementation of TDMA and DS‐CDMA systems. Specifically, at the transmit side, the pulse shape (in TDMA) and the chip shape (in DS‐CDMA) corresponds to a linear combining of in‐phase harmonics (called a CI signal). At the receiver side, traditional time‐domain processing (equalization in TDMA and RAKE reception in DS‐CDMA) is replaced by innovative frequency based processing. Here, receivers decompose pulse (or chip) shapes into carrier subcomponents and recombine these in a manner achieving both high frequency diversity gain and low MAI. The resulting system outperforms traditional TDMA and DS‐CDMA systems by 10–14 dB at typical BERs, and, by application of pseudo‐orthogonal pulse shapes (chip shapes), is able to double system throughput while maintaining performance gains of up to 8 dB. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we study a recently proposed multirate system, called wavelet based scale‐code division multiple access (W/S‐CDMA). W/S‐CDMA depends on the code, time and scale orthogonality introduced by pseudo‐noise (PN) sequences, and wavelets. In this system, the channel is partitioned into different scales, and each scale into time slots. In addition, the PN sequences are used in each scale to identify multiple users. In W/S‐CDMA, each user is assigned a specific scale and PN sequence, and transmits its successive information symbols with its PN sequence and the wavelets in that scale. More symbols are transmitted in finer scales. We analyse the bit error rate performance of Haar wavelet based S‐CDMA (HW/S‐CDMA) over an asynchronous additive white Gaussian noise (AWGN) channel by using a conventional detector for deterministic PN sequences. The performance of the system is compared to that of an equivalent multirate CDMA (MR‐CDMA) system for Gold and Kasami PN sequences. Results show that HW/S‐CDMA outperforms MR‐CDMA. In addition, because of its suitable format HW/S‐CDMA is also capable of employing the optimal PN sequence families with limited number of sequences such as Kasami, Bent, etc. repeatedly in different scales. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
针对空时分组编码多载波码分多址系统的上行物理链路,提出了基于QR分解和基于最小均方误差的逐级干扰对消接收机算法。经算法处理后的数据矩阵保持了空时分组编码的正交结构,从而可以通过简单的线性处理实现空时分组编码的次优译码。与传统的置零接收机算法相比,此算法不会对接收机端的白噪声产生放大作用。计算机仿真结果表明,在独立衰落信道或相关衰落信道下,此算法均优于置零接收机算法。在误码率为10-6水平下,此算法比传统算法的信噪比改善约4dB。  相似文献   

17.
In this paper, large code division multiple access (CDMA) random access systems employing the decorrelator and minimum mean square error (MMSE) detectors are investigated over Rayleigh fading channels under the assumption that both the number of users and the spreading gain tend to infinity, but their ratio converges to a constant. The signal to interference ratio (SIR) is shown to converge almost surely to a constant and the bit‐error rate (BER) is expressed as a function of the traffic load, transmission probability, channel coefficient, and distribution of transmission power. Furthermore, the throughput, the spectrum efficiency, and the stability region are analyzed and simulated. For dominating systems, it is shown that the MMSE detector achieves much higher throughput and spectral efficiency than decorrelator detector. Besides, it is also disclosed that, when the signal to noise ratio (SNR) is larger than an optimum value, the spectrum efficiency increases as the ratio of bit energy to noise power spectrum density (Eb/N0) increases; however, when SNR is smaller than the optimum value, the spectrum efficiency decreases as Eb/N0 increases. For ordinary stable systems, it is demonstrated that their stability region gets narrower as the traffic load increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
将时空混沌序列应用于DS—CDMA系统,给出了系统同步模型,并对系统性能进行了分析。结果表明:用混沌序列作为地址码的CDMA系统,可以有效地抑制干扰的影响,并能提高系统的传输效率,对CDMA系统性能的改善起到重要作用。  相似文献   

19.
In this paper, we propose a novel low‐complexity transmission power adaptation with good bit error rate (BER) performance for multicarrier code‐division multiple‐access (MC‐CDMA) systems over Nakagami‐m fading channels. We first propose a new receiver called ath‐order‐maximal‐ratio‐combining (a‐MRC) receiver with which the receiver power gain for the nth subcarrier is the ath (a?1) power of the corresponding channel gain. Incorporating the a‐MRC receiver, we then propose a new transmission power adaptation scheme where the transmission power is allocated over all the N subcarriers according to the subchannel gains and the transmitter adapts its power to maintain a constant signal‐to‐interference‐plus‐noise (SINR) at the receiver. The proposed scheme has a significant performance gain over the nonadaptive transmission scheme over both independent and correlated fading channels. Moreover, the proposed scheme keeps good BER performance while it is much simpler than the previous power control/adaptation schemes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we propose two new adaptive equalization algorithms for direct sequence code division multiple access (DS-CDMA) systems operating over time-varying and frequency selective channels. The equalization schemes consist of a number of serially connected stages and detect users in an ordered manner, applying a decision feedback equalizer (DFE) at each stage. Both the equalizer filters and the order in which the users are extracted are updated in a recursive least squares (RLS) manner, efficiently realized through time- and order-update recursions. V-BLAST detection ordering is implemented, that is, the stronger signal is extracted first so that the weaker users can be more easily detected. The spreading codes are unavailable at the receiver of the first scheme, whereas the second algorithm employs the RAKE receiver concept, incorporating knowledge of the spreading sequences to offer performance improvement. The bit error rate (BER) performance of the equalizers is evaluated via simulations, in both mild and severe near-far environments. Their superiority over existing techniques is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号