首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a robust power controller design of superconducting magnetic energy storage (SMES) based on wide area synchronized phasor measurement units (PMUs) for stabilization of inter-area oscillation. The structure of active and reactive power controllers of SMES is the first-order lead/lag compensator. Assuming multiple PMUs are located in an interconnected power system, the steady state phasor data are obtained by applying the small load perturbation. Using the phasor data, the simplified oscillation model (SOM) included with SMES power controllers can be identified and applied to estimate the dominant inter-area oscillation modes. In the robust control design, unstructured system uncertainties such as various operating conditions, system parameters variation, etc., are represented by the inverse additive perturbation and included in the SOM. To enhance the system robust stability margin, the optimization of SMES control parameters is solved by genetic algorithm in the SOM. Simulation studies in the West Japan 6-machine power system confirm that the robustness of the proposed SMES is much superior to the conventional SMES against various operating conditions and fault locations.  相似文献   

2.
It is well known that the communication delay due to the phasor measurement in wide area monitoring system (WAMS) as well as various system operating conditions such as heavy line flows and unpredictable network structures, may deteriorate the wide-area stabilizing control effect. To overcome this problem, the inverse input and output multiplicative model is proposed to represent unstructured uncertainties due to system operations and communication delay in the robust centralized damping controller design of superconducting magnetic energy storage (SMES) based on WAMS. The structure of centralized controller for SMES is the practical 1st-order lead/lag compensator. To automatically tune the control parameters, the optimization problem based on the enhancement of damping performance and system robust stability margin is achieved by particle swarm optimization. Simulation studies in the West Japan six-area interconnected system confirm that the proposed robust SMES centralized controller is superior to the conventional SMES centralized controller in terms of damping performance and robustness against system and time delay uncertainties.  相似文献   

3.
This paper proposes a new robust decentralized design of frequency stabilizers installed with superconducting magnetic energy storages (SMESs) by taking system uncertainties into consideration. To stabilize system frequency oscillations due to large load disturbances, the active power controlled by SMES can be exploited. The multiplicative uncertainty which is used to represent system uncertainties such as variations of system parameters, system non-linearities etc., is incorporated in system modeling. As a result, the system robust stability can be easily guaranteed in terms of the multiplicative stability margin (MSM). The frequency stabilizer is practically based on a second-order lead/lag compensator. To improve MSM, control parameters of frequency stabilizers are automatically optimized by a micro genetic algorithm. Simulation studies exhibit the high robustness of frequency stabilizers against uncertainties. Moreover, small MW/MJ capacities of SMESs are required for frequency stabilization.  相似文献   

4.
A simultaneous active power and reactive power (P–Q) control scheme of superconducting magnetic energy storage (SMES) unit is proposed to enhance the damping of a power system. In order to control the P–Q modulation to the power system, a proportional-integral (PI) controller is used to provide a supplementary damping signal. The parameters of the PI controller are determined by a systematic pole assignment method based on modal control theory. Both static load and dynamic load are included to improve the system model fidelity. Eigenvalue analysis and time-domain nonlinear simulation, using a power system incorporating a composite load, are illustrated to validate the effectiveness of the proposed PI SMES controller for the damping of the studied system over a wide range of operating conditions. The control scheme also shows that the stability margin of the power system is expanded.  相似文献   

5.
非线性PID控制器在超导磁储能装置中的应用研究   总被引:17,自引:5,他引:12  
非线性比例-积分-微分(Nonlinear Proportion-Integral-Differential,NLPID)控制是一种利用非线性跟踪-微分器和非线性组合方法对线性PID控制进行改进的新型控制策略,它具有不依赖于被控系统模型的特点.作者设计了用于电力系统超导磁储能(Superconducting Magnetic Energy Storage,SMES)装置的NLPID控制器,该控制器通过对由跟踪-微分器提取的转子角速度和机端电压的偏差及其微分和积分信号分别进行适当非线性组合,产生用于协调控制SMES和系统之间的有功和无功功率交换的控制信号.仿真结果表明该NLPID控制器具有较好的适应性和鲁棒性,且改善了系统的阻尼特性,提高了系统电压的稳定性.  相似文献   

6.
针对不确定互联电力系统,提出了一种分散鲁棒输出反馈控制器的设计方法.为了使参数不确定性符合工程实际和简化控制器的求解,引入数值界的形式对不确定性进行描述.该方法将控制器的设计归结为一组矩阵不等式的求解问题,采用同伦迭代算法,通过固定不同的变量,将非线性矩阵不等式转化为两组线性矩阵不等式并交替求解.仿真结果表明所获得的控制器使得互联电力系统鲁棒稳定,阻尼转矩充足,满足给定的性能指标,并且具有良好的抑制大扰动的能力.  相似文献   

7.
An Energy Storage System (ESS) installed in a power system can effectively damp power system oscillations through controlling exchange of either active or reactive power between the ESS and power system. This paper investigates the robustness of damping control implemented by the ESS to the variations of power system operating conditions. It proposes a new analytical method based on the well-known equal-area criterion and small-signal stability analysis. By using the proposed method, it is concluded in the paper that damping control implemented by the ESS through controlling its active power exchange with the power system is robust to the changes of power system operating conditions. While if the ESS damping control is realized by controlling its reactive power exchange with the power system, effectiveness of damping control changes with variations of power system operating condition. In the paper, an example of power system installed with a battery ESS (BESS) is presented. Simulation results confirm the analytical conclusions made in the paper about the robustness of ESS damping control. Laboratory experiment of a physical power system installed with a 35 kJ/7 kW Superconducting Magnetic Energy Storage (SMES) was carried out to evaluate theoretical study. Results are given in the paper, which demonstrate that effectiveness of SMES damping control realized through regulating active power is robust to changes of load conditions of the physical power system.  相似文献   

8.
相比于传统发电机的电力系统稳定器(PSS),柔性直流输电(VSC-HVDC)系统可以有效控制区域间的低频振荡。考虑到VSC-HVDC系统有功无功均能对交流系统进行独立控制,提出了基于有功无功双环控制的统一低频振荡控制器,并基于VSC的有功功率和无功功率控制分别设计附加控制回路来增加控制器的控制效果。首先采用最小二乘旋转不变(TLS-ESPRIT)辨识方法获得系统小信号模型和振荡特性,然后基于辨识出的模型,利用基于最优控制理论对控制器进行设计,并将最终所设计控制器分别附加于有功控制回路与无功控制回路。PSCAD的仿真结果表明,相比于常规的有功附加控制器,所提统一控制方法能达到更好的控制效果,并能保证鲁棒性。  相似文献   

9.
The unified power flow controller (UPFC) integrates properties of both shunt and series compensations, and can effectively alter power system parameters in such a way that increases power transfer capability and enhances system stability. In practice, simple proportional–integral (PI) controllers are used to control the UPFC. However, the PI control parameters are usually tuned based on classical or trial-and-error approaches and as such, they are incapable of obtaining good dynamic performance for a wide range of operating conditions and various loads in power systems. Hence, in this article robust control approaches are proposed based on the quantitative feedback theory (QFT), H loop-shaping and μ-synthesis, to design UPFC controllers (power-flow and DC-voltage regulator). The three mentioned methods are compared with each other and a supplementary damping controller is developed to improve damping power system oscillations. Here, a single-machine infinite-bus (SMIB) power system, installed with a UPFC (with system parametric uncertainties) is considered as a case study. The system parametric uncertainties are obtained following 40% simultaneous alterations in parameters and load from their typical values. The simulation results indicate satisfactory verifications of the robust control methods in dealing with the uncertainties considered. When the above three methods and the PI controller are compared in performance in several time-domain simulation tests, the results show clear superiority of the three methods over the PI controller, with the QFT presenting the best performance amongst the three robust control.  相似文献   

10.
基于超导储能的暂态稳定控制器设计   总被引:9,自引:2,他引:7  
设计了用于提高电力系统的暂态稳定超导储能(SMES)装置的非线性鲁棒控制器,并从数字仿真和动模实验两方面进行了验证。为了简化动态性能分析和控制器设计,在实验样机的基础上,提出了新的基于电流型变流器的SMES的动态模型,并将其转化为标幺制模型。通过外部干扰的引入,得到了装设SMES的单机无穷大系统的动态模型,并采用精确线性化方法和线性H∞控制理论设计了SMES的非线性鲁棒控制器。为了验证该控制器的效果,对装设SMES单机无穷大系统进行了数字仿真和动模实验,并将其与常规PI控制器进行了比较。仿真和实验结果都证明了非线性鲁棒控制器具有良好性能。  相似文献   

11.
多馈入交直流输电系统的模糊控制器协调优化算法   总被引:5,自引:2,他引:5  
设计了一套阻尼区域间功率振荡的模糊控制器。在多馈入交直流输电系统的直流功率控制系统和发电机励磁系统中同时采用了该模糊控制器,并对影响其性能的关键参数进行了协调优化。为了解决优化结果容易限于局部最优的问题,采用了遗传算法进行全局并行寻优,同时引入序优化理论在概率意义上保证优化解的质量。仿真结果表明:与常规阻尼控制器相比,模糊控制器能更好地提高交直流互联系统的动态稳定性且具有鲁棒性。序优化遗传算法比传统遗传算法具有更稳定的性能,可作为多馈入交直流输电系统的模糊控制器参数协调优化的一种有效方法。  相似文献   

12.
A robust coordination scheme to improve the stability of a power system by optimal design of multiple and multi-type damping controllers is presented in this paper. The controllers considered are power system stabilizer (PSS) and static synchronous series compensator (SSSC)-based controller. Local measurements are provided as input signals to all the controllers. The coordinated design problem is formulated as an optimization problem and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performance of the proposed controllers is evaluated for both single-machine infinite-bus power system and multi-machine power system. Nonlinear simulation results are presented over a wide range of loading conditions and system configurations to show the effectiveness and robustness of the proposed coordinated design approach. It is observed that the proposed controllers provide efficient damping to power system oscillations under a wide range of operating conditions and under various disturbances. Further, simulation results show that, in a multi-machine power system, the modal oscillations are effectively damped by the proposed approach.  相似文献   

13.
基于端口受控耗散哈密顿系统(PCHD)模型,提出了一种针对基于电压源换流器的轻型高压直流(VSC—HVDC)输电系统的无源控制新方法。该方法就是将轻型高压直流输电的换流站模型等效成一个具有耗散性质的无源系统,并根据VSC—HVDC的4种不同控制方式,确定相应的dq坐标下的电流参考值。在此基础上,通过互联与阻尼配置的方法设计无源控制器,追踪参考电流,实现独立调节瞬时有功、无功功率。仿真结果表明了该控制策略具有良好的暂态控制性能和鲁棒性。  相似文献   

14.
为实现超导磁储能系统(SMES)的大规模可扩展式应用,提高控制系统的动态性能和鲁棒性,改进级联型SMES变流器的电路拓扑,并设计基于无源控制器的总分式功率控制策略。采用二阶广义积分构造虚拟轴,实现单相电路的坐标变换;证明了无源系统反馈互联后仍保持端口受控哈密尔顿模型结构的特征,分别在交、直流侧设计控制策略,降低了控制设计的复杂度;提出总分式功率控制策略,实现系统并网总功率和各级联模块分功率的独立控制;分别在交、直流侧设计无源控制器,提高了系统控制的动态性能和稳定性。仿真分析验证了模块化级联型SMES变流器及其总分式功率无源控制策略的有效性。系统具备模块化特征,可实现灵活扩展以及各超导磁体功率的独立控制,并具有更快的响应速度、更小的超调量和更好的并网电流质量。  相似文献   

15.
Despite its several advantages, a classic direct power control (DPC) technique of doubly fed induction generators (DFIGs) driven by variable-speed wind turbines has some drawbacks such as high power ripples and variable switching frequency. In this paper, two robust controllers are designed to improve the classical DPC performance without complicating the overall scheme. First, an integral sliding mode controller (ISMC) is designed to regulate the stator active and reactive powers. Two integral switching functions are selected for controlling stator active and reactive powers. The idea of total sliding mode controller is selected to avoid reaching phase stability problem. Second, a diagonal recurrent neural network (DRNN) controller is designed and trained based on DPC. The DRNN has several advantages compared to the classical static neural networks such as recurrence and simple construction. Simple off-line back-propagation algorithm is proposed to train the proposed DRNN. The stability of the proposed ISMC and DRNN controller is proved using the Lyapunov stability theorem. The grid side converter is controlled based on the DPC principle to ensure both constant DC-link voltage and grid side reactive power. The feasibility of the proposed DPC schemes is validated by simulation studies on a 1.5-MW wind power generation system. The performance of the proposed schemes is compared with a conventional DPC scheme under different operating conditions.  相似文献   

16.
基于超导储能装置的联络线功率控制   总被引:1,自引:0,他引:1  
改变了以往将超导储能装置安装在发电机出口处的策略,利用该装置与系统间有功和无功功率交换的灵活性,进行互联系统联络线的功率控制.控制目标由传统的驱使系统恢复到故障前的稳定运行点,转为跟踪系统惯量中心,以较小的控制代价尽快将系统拉回同步,并迅速平息故障后的区域间功率振荡.利用反步法为超导储能装置的有功环节设计了鲁棒控制器,使闭环系统对建模误差及有界的外部扰动具有鲁棒性.最后利用PSS/E对所提出的控制方案在4机2区系统上进行了数字仿真,证明了该方案的有效性.  相似文献   

17.
针对大规模风电场接入电力系统面临的低频振荡问题,提出了一种双馈风电机组(doubly-fed induction generator,DFIG)附加鲁棒控制策略,通过控制双馈风电机组的转子侧无功输出向系统注入无功功率以达到提升系统阻尼的目的。首先采用TLS-ESPRIT辨识算法辨识出系统模型,然后采用基于区域极点配置的鲁棒控制理论设计附加阻尼控制器。为对所提控制方法相比于传统控制方法的优势,设计了基于极点配置的阻尼控制器。最后在PSCAD软件中搭建含风电的两区域模型验证所提控制方法的有效性。仿真结果表明DFIG附加鲁棒控制器能有效抑制电力系统低频振荡,具有较好的鲁棒性。  相似文献   

18.
针对电力系统非线性的特点,将电力系统中的一类仿射非线性系统转换为标准的哈密顿系统,进行了超导储能SMES(Superconducting Magnetic Energy Storage)有功功率的控制设计,对无功功率用传统的比例环节进行设计,基于受控哈密顿系统理论,建立了SMES装置的端口受控哈密顿PCH(Port Controlled Hamiltonian)模型,针对系统的外界干扰和参数不确定性,采用自适应KL2增益控制设计方法设计了含有SMES装置的单机无穷大电力系统的自适用L2增益控制器。仿真结果表明,采用基于哈密顿系统理论的自适应L2增益控制方法对SMES有功功率的设计,利用传统的比例积分PI(Proportion Integration)控制器进行无功功率控制,能够有效地抑制干扰,显著地改善系统的动态性能。  相似文献   

19.
高压直流输电系统换流站鲁棒自适应输出反馈控制   总被引:6,自引:3,他引:3  
针对高压直流输电系统,设计了一种鲁棒自适应输出反馈控制器.首先,将高压直流输电系统换流站动态模型转换成用输入输出表示的非线性系统.然后,利用自适应非线性阻尼项来抑制系统的非线性动态不确定性和未知有界扰动,应用Lyapunov稳定性理论构造出控制器和自适应参数的表达式.Lyapunov稳定性分析结果表明,文中所提出的控制器保证了闭环系统的稳定性.最后,将设计的控制器应用到一个3机直流输电系统中,仿真结果表明,与传统的PI控制器相比较,文中控制器可大大提高系统的稳定性和鲁棒性.  相似文献   

20.
A simple and novel control strategy for damping electromechanical oscillations through control of power converter firing angles α 1 and α2 of a superconducting magnetic energy storage (SMES) unit is proposed. Both active and reactive power modulations are used under unequal α-mode of operation. The choice of unequal mode is discussed in detail. The gains of the proposed SMES controller are determined once offline depending on the power system and the rating of the SMES unit. Simulation results show that the SMES unit can effectively suppress power system oscillations by utilizing its active and reactive power modulation capabilities. The control algorithm is simple and its realization will require very little hardware  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号