首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1+/−) mice. Nf1+/− MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1+/− MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1+/− MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs.  相似文献   

2.
Two series of novel 4-aryl-2H-pyrido[1,2-c]pyrimidine (6a–i) and 4-aryl-5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine (7a–i) derivatives were synthesized. The chemical structures of the new compounds were confirmed by 1H and 13C NMR spectroscopy and ESI-HRMS spectrometry. The affinities of all compounds for the 5-HT1A receptor and serotonin transporter protein (SERT) were determined by in vitro radioligand binding assays. The test compounds demonstrated very high binding affinities for the 5-HT1A receptor of all derivatives in the series (6a–i and 7a–i) and generally low binding affinities for the SERT protein, with the exception of compounds 6a and 7g. Extended affinity tests for the receptors D2, 5-HT2A, 5-HT6 and 5-HT7 were conducted with regard to selected compounds (6a, 7g, 6d and 7i). All four compounds demonstrated very high affinities for the D2 and 5-HT2A receptors. Compounds 6a and 7g also had high affinities for 5-HT7, while 6d and 7i held moderate affinities for this receptor. Compounds 6a and 7g were also tested in vivo to identify their functional activity profiles with regard to the 5-HT1A receptor, with 6a demonstrating the activity profile of a presynaptic agonist. Metabolic stability tests were also conducted for 6a and 6d.  相似文献   

3.
Among the serotonin receptors, one of the most recently discovered 5-HT6 subtype is an important protein target and its ligands may play a key role in the innovative treatment of cognitive disorders. However, none of its selective ligands have reached the pharmaceutical market yet. Recently, a new chemical class of potent 5-HT6 receptor agents, the 1,3,5-triazine-piperazine derivatives, has been synthesized. Three members, the ortho and meta dichloro- (1,2) and the unsubstituted phenyl (3) derivatives, proved to be of special interest due to their high affinities (1,2) and selectivity (3) toward 5-HT6 receptor. Thus, a broader pharmacological profile for 1–3, including comprehensive screening of the receptor selectivity and drug-like parameters in vitro as well as both, pharmacokinetic and pharmacodynamic properties in vivo, have been investigated within this study. A comprehensive analysis of the obtained results indicated significant procognitive-like activity together with beneficial drug-likeness in vitro and pharmacokinetics in vivo profiles for both, (RS)-4-[1-(2,3-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2) and (RS)-4-(4-methylpiperazin-1-yl)-6-(1-phenoxypropyl)-1,3,5-triazin-2-amine (3), but insensibly predominant for compound 2. Nevertheless, both compounds (2 and 3) seem to be good Central Nervous System drug candidates in search for novel therapeutic approach to dementia diseases, based on the 5-HT6 receptor target.  相似文献   

4.
In the present study, we investigated the involvement of the chaperone protein BiP (also known as GRP78 or Hspa5), a master regulator of intracellular proteostasis, in two mouse models of neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). To this end, we used mice bearing partial genetic deletion of the BiP gene (BiP+/− mice), which, for the ALS model, were crossed with mutant SOD1 (mSOD1) transgenic mice to generate mSOD1/BiP+/− double mutant mice. Our data revealed a more intense neurological decline in the double mutants, reflected in a greater deterioration of the neurological score and rotarod performance, with also a reduced animal survival, compared to mSOD1 transgenic mice. Such worsening was associated with higher microglial (labelled with Iba-1 immunostaining) and, to a lesser extent, astroglial (labelled with GFAP immunostaining) immunoreactivities found in the double mutants, but not with a higher loss of spinal motor neurons (labelled with Nissl staining) in the spinal cord. The morphological analysis of Iba-1 and GFAP-positive cells revealed a higher presence of activated cells, characterized by elevated cell body size and shorter processes, in double mutants compared to mSOD1 mice with normal BiP expression. In the case of the PD model, BiP+/− mice were unilaterally lesioned with the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). In this case, however, we did not detect a greater susceptibility to damage in mutant mice, as the motor defects caused by 6-OHDA in the pole test and the cylinder rearing test, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity (labelled with CD68 and GFAP immunostaining) detected in the substantia nigra were of similar magnitude in BiP+/− mice compared with wildtype animals. Therefore, our findings support the view that a dysregulation of the protein BiP may contribute to ALS pathogenesis. As BiP has been recently related to cannabinoid type-1 (CB1) receptor function, our work also opens the door to future studies on a possible link between BiP and the neuroprotective effects of cannabinoids that have been widely reported in this neuropathological context. In support of this possibility, preliminary data indicate that CB1 receptor levels are significantly reduced in mSOD1 mice having partial deletion of BiP gene.  相似文献   

5.
6.
Recent studies revealed that the activation of serotonergic 5-HT1A and muscarinic M1, M4, or M5 receptors prevent MK-801-induced cognitive impairments in animal models. In the present study, the effectiveness of the simultaneous activation of 5-HT1A and muscarinic receptors at preventing MK-801-induced cognitive deficits in novel object recognition (NOR) or Y-maze tests was investigated. Activators of 5-HT1A (F15599), M1 (VU0357017), M4 (VU0152100), or M5 (VU0238429) receptors administered at top doses for seven days reversed MK-801-induced deficits in the NOR test, similar to the simultaneous administration of subeffective doses of F15599 (0.05 mg/kg) with VU0357017 (0.15 mg/kg), VU0152100 (0.05 mg/kg), or VU0238429 (1 mg/kg). The compounds did not prevent the MK-801-induced impairment when administered acutely. Their activity was less evident in the Y-maze. Pharmacokinetic studies revealed high brain penetration of F15599 (brain/plasma ratio 620%), which was detected in the frontal cortex (FC) up to 2 h after administration. Decreases in the brain penetration properties of the compounds were observed after acute administration of the combinations, which might have influenced behavioral responses. This negative effect on brain penetration was not observed when the compounds were administered repeatedly. Based on our results, prolonged administration of a 5-HT1A activator with muscarinic receptor ligands may be effective at reversing cognitive decline related to schizophrenia, and the FC may play a critical role in this interaction.  相似文献   

7.
Approximately 50–80% of children with autism spectrum disorders (ASDs) exhibit sleep problems, but the contribution of circadian clock dysfunction to the development of ASDs remains largely unknown. The essential clock gene Bmal1 (Arntl or Mop3) has been associated with human sociability, and its missense mutation is found in ASD. Our recent study found that Bmal1-null mice exhibit a variety of autism-like phenotypes. Here, we further investigated whether an incomplete loss of Bmal1 function could cause significant autism-like behavioral changes in mice. Our results demonstrated that heterozygous Bmal1 deletion (Bmal1+/−) reduced the Bmal1 protein levels by ~50–75%. Reduced Bmal1 expression led to decreased levels of clock proteins, including Per1, Per2, Cry 1, and Clock but increased mTOR activities in the brain. Accordingly, Bmal1+/− mice exhibited aberrant ultrasonic vocalizations during maternal separation, deficits in sociability and social novelty, excessive repetitive behaviors, impairments in motor coordination, as well as increased anxiety-like behavior. The novel object recognition memory remained intact. Together, these results demonstrate that haploinsufficiency of Bmal1 can cause autism-like behavioral changes in mice, akin to those identified in Bmal1-null mice. This study provides further experimental evidence supporting a potential role for disrupted clock gene expression in the development of ASD.  相似文献   

8.
The Hedgehog (Hh) pathway is essential for the embryonic development and homeostatic maintenance of many adult tissues and organs. It has also been associated with some functions of the innate and adaptive immune system. However, its involvement in the immune response has not been well determined. Here we study the role of Hh signalling in the modulation of the immune response by using the Ptch-1-LacZ+/− mouse model (hereinafter referred to as ptch+/−), in which the hemizygous inactivation of Patched-1, the Hh receptor gene, causes the constitutive activation of Hh response genes. The in vitro TCR stimulation of spleen and lymph node (LN) T cells showed increased levels of Th2 cytokines (IL-4 and IL-10) in ptch+/−cells compared to control cells from wild-type (wt) littermates, suggesting that the Th2 phenotype is favoured by Hh pathway activation. In addition, CD4+ cells secreted less IL-17, and the establishment of the Th1 phenotype was impaired in ptch+/− mice. Consistently, in response to an inflammatory challenge by the induction of experimental autoimmune encephalomyelitis (EAE), ptch+/− mice showed milder clinical scores and more minor spinal cord damage than wt mice. These results demonstrate a role for the Hh/ptch pathway in immune response modulation and highlight the usefulness of the ptch+/− mouse model for the study of T-cell-mediated diseases and for the search for new therapeutic strategies in inflammatory diseases.  相似文献   

9.
A single dose of psilocybin, a psychedelic and serotonin 2A receptor (5-HT2AR) agonist, may be associated with antidepressant effects. The mechanism behind its antidepressive action is unknown but could be linked to increased synaptogenesis and down-regulation of cerebral 5-HT2AR. Here, we investigate if a single psychedelic dose of psilocybin changes synaptic vesicle protein 2A (SV2A) and 5-HT2AR density in the pig brain. Twenty-four awake pigs received either 0.08 mg/kg psilocybin or saline intravenously. Twelve pigs (n = 6/intervention) were euthanized one day post-injection, while the remaining twelve pigs were euthanized seven days post-injection (n = 6/intervention). We performed autoradiography on hippocampus and prefrontal cortex (PFC) sections with [3H]UCB-J (SV2A), [3H]MDL100907 (5-HT2AR antagonist) and [3H]Cimbi-36 (5-HT2AR agonist). One day post psilocybin injection, we observed 4.42% higher hippocampal SV2A density and lowered hippocampal and PFC 5-HT2AR density (−15.21% to −50.19%). These differences were statistically significant in the hippocampus for all radioligands and in the PFC for [3H]Cimbi-36 only. Seven days post-intervention, there was still significantly higher SV2A density in the hippocampus (+9.24%) and the PFC (+6.10%), whereas there were no longer any differences in 5-HT2AR density. Our findings suggest that psilocybin causes increased persistent synaptogenesis and an acute decrease in 5-HT2AR density, which may play a role in psilocybin’s antidepressive effects.  相似文献   

10.
11.
This study investigates whether reduced optic atrophy 1 (Opa1) level promotes apoptosis and retinal vascular lesions associated with diabetic retinopathy (DR). Four groups of mice: wild type (WT) control mice, streptozotocin (STZ)-induced diabetic mice, Opa1+/− mice, and diabetic Opa1+/− mice were used in this study. 16 weeks after diabetes onset, retinas were assessed for Opa1 and Bax levels by Western blot analysis, and retinal networks were examined for acellular capillaries (AC) and pericyte loss (PL). Apoptotic cells were detected in retinal capillaries using TUNEL assay, and caspase-3 activity was assessed using fluorometric analysis. Opa1 expression was significantly downregulated in retinas of diabetic and Opa1+/− mice compared with those of WT mice. Inducing diabetes further decreased Opa1 expression in retinas of Opa1+/− mice. Increased cytochrome c release concomitant with increased level of pro-apoptotic Bax and elevated caspase-3 activity were observed in retinas of diabetic and Opa1+/− mice; the number of TUNEL-positive cells and AC/PL was also significantly increased. An additional decrease in the Opa1 level in retinas of diabetic Opa1+/− mice exacerbated the development of apoptotic cells and AC/PL compared with those of diabetic mice. Diabetes-induced Opa1 downregulation contributes, at least in part, to the development of retinal vascular lesions characteristic of DR.  相似文献   

12.
Neurofibromatosis type 1 (NF1) is an autosomal dominant human genetic disorder. The progression of benign plexiform neurofibromas to malignant peripheral nerve sheet tumors (MPNSTs) is a major cause of mortality in patients with NF1. Although elevated epidermal growth factor receptor (EGFR) expression plays a crucial role in the pathogenesis of MPNST, the cause of EGFR overexpression remains unclear. Here, we assessed EGFR expression levels in MPNST tissues of NF1 patients and NF1 patient-derived MPNST cells. We found that the expression of EGFR was upregulated in MPNST tissues and MPNST cells, while the expression of neurofibromin was significantly decreased. Manipulation of NF1 expression by NF1 siRNA treatment or NF1-GAP-related domain overexpression demonstrated that EGFR expression levels were closely and inversely correlated with neurofibromin levels. Notably, knockdown of the NF1 gene by siRNA treatment augmented the nuclear localization of phosphorylated SP1 (pSP1) and enhanced pSP1 binding to the EGFR gene promoter region. Our results suggest that neurofibromin deficiency in NF1-associated MPNSTs enhances the Ras/ERK/SP1 signaling pathway, which in turn may lead to the upregulation of EGFR expression. This study provides insight into the progression of benign tumors and novel therapeutic approaches for treatment of NF1-associated MPNSTs.  相似文献   

13.
Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/− mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/− mice.  相似文献   

14.
Experiments were carried out on recombinant B6.CBA-D13Mit76C (B6-M76C) and B6.CBA-D13Mit76B (B6-M76B) mouse lines created by transferring a 102.73–118.83 Mbp fragment of chromosome 13, containing the 5-HT1A receptor gene, from CBA or C57BL/6 strains to a C57BL/6 genetic background, correspondingly. We have recently shown different levels of 5-HT1A receptor functionality in these mouse lines. The administration of BDNF (300 ng/mouse, i.c.v.) increased the levels of exploratory activity and intermale aggression only in B6-M76B mice, without affecting depressive-like behavior in both lines. In B6-M76B mice the behavioral alterations were accompanied by a decrease in the 5-HT2A receptor functional activity and the augmentation of levels of serotonin and its main metabolite, 5-HIAA (5-hydroxyindoleacetic acid), in the midbrain. Moreover, the levels of dopamine and its main metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid), were also elevated in the striatum of B6-M76B mice after BDNF treatment. In B6-M76C mice, central BDNF administration led only to a reduction in the functional activity of the 5-HT1A receptor and a rise in DOPAC levels in the midbrain. The obtained data suggest the importance of the 102.73–118.83 Mbp fragment of mouse chromosome 13, which contains the 5-HT1A receptor gene, for BDNF-induced alterations in behavior and the brain monoamine system.  相似文献   

15.
The influence of genetic background on sensitivity to drugs represents a topical problem of personalized medicine. Here, we investigated the effect of chronic (20 mg/kg, 14 days, i.p.) antidepressant fluoxetine treatment on recombinant B6-M76C mice, differed from control B6-M76B mice by CBA-derived 102.73–110.56 Mbp fragment of chromosome 13 and characterized by altered sensitivity of 5-HT1A receptors to chronic 8-OH-DPAT administration and higher 5-HT1A receptor mRNA levels in the frontal cortex and hippocampus. Significant changes in the effects of fluoxetine treatment on behavior and brain 5-HT system in recombinant B6-M76C mice were revealed. In contrast to B6-M76B mice, in B6-M76C mice, fluoxetine produced pro-depressive effects, assessed in a forced swim test. Fluoxetine decreased 5-HT1A receptor mRNA levels in the cortex and hippocampus, reduced 5-HT1A receptor protein levels and increased receptor silencer Freud-1 protein levels in the hippocampus of B6-M76C mice. Fluoxetine increased mRNA levels of the gene encoding key enzyme for 5-HT synthesis in the brain, tryptophan hydroxylase-2, but decreased tryptophan hydroxylase-2 protein levels in the midbrain of B6-M76B mice. These changes were accompanied by increased expression of the 5-HT transporter gene. Fluoxetine reduced 5-HT and 5-HIAA levels in cortex, hippocampus and midbrain of B6-M76B and in cortex and midbrain of B6-M76C; mice. These data demonstrate that changes in genetic background may have a dramatic effect on sensitivity to classic antidepressants from the Selective Serotonin Reuptake Inhibitors family. Additionally, the results provide new evidence confirming our idea on the disrupted functioning of 5-HT1A autoreceptors in the brains of B6-M76C mice, suggesting these mice as a model of antidepressant resistance.  相似文献   

16.
Depression associated with poor general medical condition, such as post-stroke (PSD) or post-myocardial infarction (PMID) depression, is characterized by resistance to classical antidepressants. Special treatment strategies should thus be developed for these conditions. Our study aims to investigate the mechanism of action of 2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide (L-17), a recently designed thiadiazine derivative with putative neuro- and cardioprotective and antidepressant-like effects, using combined in silico (for prediction of the molecular binding mechanisms), ex vivo (for assessment of the neural excitability using c-Fos immunocytochemistry), and in vivo (for direct examination of the neuronal excitability) methodological approaches. We found that the predicted binding affinities of L-17 to serotonin (5-HT) transporter (SERT) and 5-HT3 and 5-HT1A receptors are compatible with selective 5-HT serotonin reuptake inhibitors (SSRIs) and antagonists of 5-HT3 and 5-HT1A receptors, respectively. L-17 robustly increased c-Fos immunoreactivity in the amygdala and decreased it in the hippocampus. L-17 dose-dependently inhibited 5-HT neurons of the dorsal raphe nucleus; this inhibition was partially reversed by the 5-HT1A antagonist WAY100135. We suggest that L-17 is a potent 5-HT reuptake inhibitor and partial antagonist of 5-HT3 and 5-HT1A receptors; the effects of L-17 on amygdaloid and hippocampal excitability might be mediated via 5-HT, and putatively mediate the antidepressant-like effects of this drug. Since L-17 also possesses neuro- and cardioprotective properties, it can be beneficial in PSD and PMID. Combined in silico predictions with ex vivo neurochemical and in vivo electrophysiological assessments might be a useful strategy for early assessment of the efficacy and neural mechanism of action of novel CNS drugs.  相似文献   

17.
Neurofibromatosis type 1 (NF1) gene mutations or alterations occur within neurofibromatosis type 1 as well as in many different malignant tumours on the somatic level. In glioblastoma, NF1 loss of function plays a major role in inducing the mesenchymal (MES) subtype and, therefore defining the most aggressive glioblastoma. This is associated with an immune signature and mediated via the NF1–MAPK–FOSL1 axis. Specifically, increased invasion seems to be regulated via mutations in the leucine-rich domain (LRD) of the NF1 gene product neurofibromin. Novel targets for therapy may arise from neurofibromin deficiency-associated cellular mechanisms that are summarised in this review.  相似文献   

18.
The parasympathetic nervous system is critically involved in the regulation of tear secretion by activating muscarinic acetylcholine receptors. Hence, various animal models targeting parasympathetic signaling have been developed to induce dry eye disease (DED). However, the muscarinic receptor subtype (M1–M5) mediating tear secretion remains to be determined. This study was conducted to test the hypothesis that the M3 receptor subtype regulates tear secretion and to evaluate the ocular surface phenotype of mice with targeted disruption of the M3 receptor (M3R−/−). The experimental techniques included quantification of tear production, fluorescein staining of the ocular surface, environmental scanning electron microscopy, assessment of proliferating cells in the corneal epithelium and of goblet cells in the conjunctiva, quantification of mRNA for inflammatory cytokines and prooxidant redox enzymes and quantification of reactive oxygen species. Tear volume was reduced in M3R−/− mice compared to age-matched controls at the age of 3 months and 15 months, respectively. This was associated with mild corneal epitheliopathy in the 15-month-old but not in the 3-month-old M3R−/− mice. M3R−/− mice at the age of 15 months also displayed changes in corneal epithelial cell texture, reduced conjunctival goblet cell density, oxidative stress and elevated mRNA expression levels for inflammatory cytokines and prooxidant redox enzymes. The findings suggest that the M3 receptor plays a pivotal role in tear production and its absence leads to ocular surface changes typical for DED at advanced age.  相似文献   

19.
Comorbid diabetes and depression constitutes a major health problem, worsening associated cardiovascular diseases. Fluoxetine’s (antidepressant) role on cardiac diabetic complications remains unknown. We determined whether fluoxetine modifies cardiac vagal input and its serotonergic modulation in male Wistar diabetic rats. Diabetes was induced by alloxan and maintained for 28 days. Fluoxetine was administered the last 14 days (10 mg/kg/day; p.o). Bradycardia was obtained by vagal stimulation (3, 6 and 9 Hz) or i.v. acetylcholine administrations (1, 5 and 10 μg/kg). Fluoxetine treatment diminished vagally-induced bradycardia. Administration of 5-HT originated a dual action on the bradycardia, augmenting it at low doses and diminishing it at high doses, reproduced by 5-CT (5-HT1/7 agonist). 5-CT did not alter the bradycardia induced by exogenous acetylcholine. Decrease of the vagally-induced bradycardia evoked by high doses of 5-HT and 5-CT was reproduced by L-694,247 (5-HT1D agonist) and blocked by prior administration of LY310762 (5-HT1D antagonist). Enhancement of the electrical-induced bradycardia by 5-CT (10 μg/kg) was abolished by pretreatment with SB269970 (5-HT7 receptor antagonist). Thus, oral fluoxetine treatment originates a decrease in cardiac cholinergic activity and changes 5-HT modulation of bradycardic responses in diabetes: prejunctional 5-HT7 receptors augment cholinergic-evoked bradycardic responses, whereas prejunctional 5-HT1D receptors inhibit vagally-induced bradycardia.  相似文献   

20.
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatis aa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号