首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endometriosis is a common gynecological disease affecting 6%–10% of women of reproductive age and is characterized by the presence of endometrial-like tissue in localizations outside of the uterine cavity as, e.g., endometriotic ovarian cysts. Mainly, two epithelial ovarian carcinoma subtypes, the ovarian clear cell carcinomas (OCCC) and the endometrioid ovarian carcinomas (EnOC), have been molecularly and epidemiologically linked to endometriosis. Mutations in the gene encoding the AT-rich interacting domain containing protein 1A (ARID1A) have been found to occur in high frequency in OCCC and EnOC. The majority of these mutations lead to a loss of expression of the ARID1A protein, which is a subunit of the SWI/SNF chromatin remodeling complex and considered as a bona fide tumor suppressor. ARID1A mutations frequently co-occur with mutations, leading to an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, such as mutations in PIK3CA encoding the catalytic subunit, p110α, of PI3K. In combination with recent functional observations, these findings strongly suggest cooperating mechanisms between the two pathways. The occurrence of ARID1A mutations and alterations in the PI3K/AKT pathway in endometriosis and endometriosis-associated ovarian carcinomas, as well as the possible functional and clinical implications are discussed in this review.  相似文献   

2.
Erythropoietin (EPO) is a glycoprotein cytokine known for its pleiotropic effects on various types of cells and tissues. EPO and its receptor EPOR trigger signaling cascades JAK2/STAT5, MAPK, and PI3K/AKT that are interconnected and irreplaceable for cell survival. In this article, we describe the role of the MAPK and PI3K/AKT signaling pathways during red blood cell formation as well as in non-hematopoietic tissues and tumor cells. Although the central framework of these pathways is similar for most of cell types, there are some stage-specific, tissue, and cell-lineage differences. We summarize the current state of research in this field, highlight the novel members of EPO-induced PI3K and MAPK signaling, and in this respect also the differences between erythroid and non-erythroid cells.  相似文献   

3.
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.  相似文献   

4.
Breast cancer is a serious health problem worldwide, representing the second cause of death through malignancies among women in developed countries. Population, endogenous and exogenous hormones, and physiological, genetic and breast-related factors are involved in breast cancer pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is a signaling pathway involved in cell proliferation, survival, invasion, migration, apoptosis, glucose metabolism and DNA repair. In breast tumors, PIK3CA somatic mutations have been reported, located in exon 9 and exon 20. Up to 40% of PIK3CA mutations are estrogen receptor (ER) positive and human epidermal growth factor receptor 2 (HER2) -negative in primary and metastatic breast cancer. HER2 is overexpressed in 20–30% of breast cancers. HER1, HER2, HER3 and HER4 are membrane receptor tyrosine kinases involved in HER signaling to which various ligands can be attached, leading to PI3K/AKT activation. Currently, clinical studies evaluate inhibitors of the PI3K/AKT/mTOR axis. The main purpose of this review is to present general aspects of breast cancer, the components of the AKT signaling pathway, the factors that activate this protein kinase B, PI3K/AKT-breast cancer mutations, PI3K/AKT/mTOR-inhibitors, and the relationship between everolimus, temsirolimus and endocrine therapy.  相似文献   

5.
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy.  相似文献   

6.
Cervical carcinoma (CC) is the second most prevalent gynecologic cancer in females across the world. To obtain a better understanding of the mechanisms underlying the development of CC, high-resolution label-free mass spectrometry was performed on CC and adjacent normal tissues from eight patients. A total of 2631 proteins were identified, and 46 significant differently expressed proteins (DEPs) were found between CC and normal tissues (p < 0.01, fold change >10 or <0.1). Ingenuity pathway analysis revealed that the majority of the proteins were involved in the regulation of eIF4 and p70S6K signaling and mTOR signaling. Among 46 DEPs, Integrinβ6 (ITGB6), PPP1CB, TMPO, PTGES3 (P23) and DTX3L were significantly upregulated, while Desmin (DES) was significantly downregulated in CC tissues compared with the adjacent normal tissues. In in vivo and in vitro experiments, DTX3L knockdown suppressed CC cell proliferation, migration, invasion and xenograft tumorigenesis, and enhanced cell apoptosis. Combination of silencing DTX3L and cisplatin treatment induced higher apoptosis percentage compared to cisplatin treatment alone. Moreover, DTX3L silencing inhibited the PI3K/AKT/mTOR signal pathway. Thus, our results suggested DTX3L could regulate CC progression through the PI3K/AKT/mTOR signal pathway and is potentially a novel biomarker and therapeutic target for CC.  相似文献   

7.
Background: Cibotii rhizoma (CR) is a famous traditional Chinese medicine (TCM) used to treat bleeding, rheumatism, lumbago, etc. However, its therapeutic effects and mechanism against thrombocytopenia are still unknown so far. In the study, we investigated the effects of aqueous extracts of Cibotii rhizoma (AECRs) against thrombocytopenia and its molecular mechanism.Methods: Giemsa staining, phalloidin staining, and flow cytometry were performed to measure the effect of AECRs on the megakaryocyte differentiation in K562 and Meg-01 cells. A radiation-induced thrombocytopenia mouse model was constructed to assess the therapeutic actions of AECRs on thrombocytopenia. Network pharmacology and experimental verification were carried out to clarify its mechanism against thrombocytopenia. Results: AECRs promoted megakaryocyte differentiation in K562 and Meg-01 cells and accelerated platelet recovery and megakaryopoiesis with no systemic toxicity in radiation-induced thrombocytopenia mice. The PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways contributed to AECR-induced megakaryocyte differentiation. The suppression of the above signaling pathways by their inhibitors blocked AERC-induced megakaryocyte differentiation. Conclusions: AECRs can promote megakaryopoiesis and thrombopoiesis through activating PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways, which has the potential to treat radiation-induced thrombocytopenia in the clinic.  相似文献   

8.
The use of natural compounds is promising in approaches to prevent and treat cancer. The long-term application of most currently employed chemotherapy techniques has toxic side effects. Eugenol, a phenolic phytochemical extracted from certain essential oils, has an anti-cancer effect. The modulation of autophagy can promote either the survival or apoptosis of cancer cells. Triple-negative (MDA-MB-231) and HER2 positive (SK-BR-3) breast cancer cell lines were treated with different doses of eugenol. Apoptosis was detected by a flow-cytometry technique, while autophagy was detected by acridine orange. Real-time PCR and Western blot assays were applied to investigate the effect of eugenol on the gene and protein expression levels of autophagy and apoptotic genes. Treating cells with different concentrations of eugenol significantly inhibited cell proliferation. The protein levels of AKT serine/threonine kinase 1 (AKT), forkhead box O3 (FOXO3a), cyclin dependent kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor (p27), and Caspase-3 and -9 increased significantly in Eugenol-treated cells. Eugenol also induced autophagy by upregulating the expression levels of microtubule-associated protein 1 light chain 3 (LC3) and downregulating the expression of nucleoporin 62 (NU p62). Eugenol is a promising natural anti-cancer agent against triple-negative and HER2-positive breast cancer. It appears to work by targeting the caspase pathway and by inducing autophagic cell death.  相似文献   

9.
Bone morphogenetic protein-4 (BMP4), a member of the transforming growth factor β (TGF-β) family of growth factors, is activated and increased under hypoxic conditions, which plays an important role in the progression of pulmonary arterial hypertension (PAH). Previous studies have shown that BMP4 is involved in the regulation of proliferation, differentiation, migration and apoptosis of various cell types. However, the precise mechanisms involved in the regulation of pulmonary artery smooth muscle cells (PASMCs) in PAH are still incompletely understood. It has been reported that AKT is a critical regulator of cell survival and vascular remodeling. Therefore, there may be crosstalk between BMP4 anti-apoptotic processes and PI3K/AKT survival effect in rat PASMCs. To test this hypothesis, we performed confocal, cell viability measurement, mitochondrial potential, real-time polymerase chain reaction (PCR), and Western blot analysis to determine the role of BMP4 on cell survival and apoptosis. We found that hypoxia up-regulated the expression of BMP4. BMP4 promoted cell survival, reduced mitochondrial depolarization, and increased the expression of Bcl-2 and procaspase-3 in PASMCs under serum-deprived condition. These effects were reversed by PI3K/AKT inhibitors (LY294002 and wortmannin). Thus, these findings indicate that BMP4 protects PASMCs from apoptosis at least in part, mediated via the PI3K/AKT pathway.  相似文献   

10.
Ultraviolet (UV) radiation is a major cause of photoaging that can induce DNA damage, oxidative stress, and cellular aging. Metformin (MF) can repair DNA damage, scavenge reactive oxygen species (ROS), and protect cells. However, the mechanism by which MF inhibits cell senescence in chronic skin damage induced by UVA is unclear. In this study, human foreskin fibroblasts (HFFs) treated with UVA were used as an in vitro model and UVA-induced skin photoaging in Kunming mice was used as an in vivo model to investigate the potential skin protective mechanism of MF. The results revealed that MF treatment attenuated UVA-induced cell viability, skin aging, and activation of the PI3K/AKT/mTOR signaling pathway. Furthermore, MF treatment alleviated the mitochondrial oxidative stress and decreased mitophagy. Knockdown of Parkin by siRNA increased the clearance of MF in senescent cells. The treatment of Kunming mice with MF at a dose of 10 mg/kg/day significantly reduced UVA-induced skin roughness, epidermal thinning, collagen degradation, and skin aging. In conclusion, our experimental results suggest that MF exerts anti-photoaging effects by inhibiting mitophagy and the PI3K/AKT/mTOR signaling pathway. Therefore, our study improves the current understanding of the protective mechanism of MF against photoaging.  相似文献   

11.
Diallyl disulfide (DADS), a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound’s anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP) family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm) and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4) and Fas ligand (FasL) proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular-signal regulating kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059) and p38 MAPK (SB203580) had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells.  相似文献   

12.
Silicosis is a refractory disease. Previous studies indicate that damaged alveolar epithelial cells act as a driver in pulmonary fibrosis. Our results show that epithelial cells that acquire the mesenchymal phenotype are associated with the pathogenesis of silicosis. c-Src kinase, a non-receptor tyrosine kinase, has been shown to be a positive regulator of organ fibrosis, but specific mechanisms remain unclear and rarely researched in silicosis. The activated Phosphatidylinositol-3 kinases/AKT(PI3K/AKT) pathway promotes fibrosis. We aimed to determine whether c-Src regulates fibrosis via the PI3K/AKT signaling pathway in the development of silicosis. C57/BL mice were intratracheally perfused with 10 mg silica suspension to establish a model of silicosis. In vivo, silica particles induced lung fibrosis. The profibrotic cytokine transforming growth factor-β1 (TGF-β1) exhibited a high expression in pulmonary fibrosis. The phosphorylated c-Src protein was increased and the PI3K/AKT pathway was activated in model lung tissue. In vitro, silica increased the expression of TGF-β1- and TGF-β1-induced mesenchymal phenotype and fibrosis in a mouse epithelial cells line. siRNA-Src inhibited the c-Src, the phosphorylation of the PI3K/AKT pathway, and the mesenchymal phenotype induced by TGF-β1. LY294002, a specific inhibitor of PI3K, suppressed the phosphorylation of PI3K/AKT but did not affect Src activation. SU6656, a selective Src inhibitor, attenuated fibrosis in silicosis model. In summary, c-Src promotes fibrosis via the PI3K/AKT pathway in silica-induced lung fibrosis, and Src kinase inhibitors are potentially effective for silicosis treatment.  相似文献   

13.
Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment up to a 200 μM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) μM were adopted for further investigation. SCU induced cell cycle arrest at the G2/M phase and inhibited cell migration and proliferation in HepG2 cells in a dose-dependent manner. Furthermore, increased PTEN expression by SCU led to the subsequent downregulation of PI3K/Akt/NF-κB signaling pathway related proteins. In addition, SCU regulated the metastasis with EMT and migration-related proteins in HepG2 cells. In summary, SCU inhibits cell proliferation and metastasis in HepG2 cells through PI3K/Akt/NF-κB signaling by upregulation of PTEN, suggesting that SCU might be used as a potential agent for HCC therapy.  相似文献   

14.
Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL−1, 109.8 µg·mL−1 and 45.7 µg·mL−1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas.  相似文献   

15.
The aberrant activation of the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway is common in pancreatic ductal adenocarcinomas (PDAC). The application of inhibitors against PI3K and AKT has been considered as a therapeutic option. We investigated PDAC cell lines exposed to increasing concentrations of MK-2206 (an AKT1/2/3 inhibitor) and Buparlisib (a pan-PI3K inhibitor). Cell proliferation, metabolic activity, biomass, and apoptosis/necrosis were evaluated. Further, whole-exome sequencing (WES) and RNA sequencing (RNA-seq) were performed to analyze the recurrent aberrations and expression profiles of the inhibitor target genes and the genes frequently mutated in PDAC (Kirsten rat sarcoma virus (KRAS), Tumor protein p53 (TP53)). MK-2206 and Buparlisib demonstrated pronounced cytotoxic effects and limited cell-line-specific effects in cell death induction. WES revealed two sequence variants within the direct target genes (PIK3CA c.1143C > G in Colo357 and PIK3CD c.2480C > G in Capan-1), but a direct link to the Buparlisib response was not observed. RNA-seq demonstrated that the expression level of the inhibitor target genes did not affect the efficacy of the corresponding inhibitors. Moreover, increased resistance to MK-2206 was observed in the analyzed cell lines carrying a KRAS variant. Further, increased resistance to both inhibitors was observed in SU.86.86 carrying two TP53 missense variants. Additionally, the presence of the PIK3CA c.1143C > G in KRAS-variant-carrying cell lines was observed to correlate with increased sensitivity to Buparlisib. In conclusion, the present study reveals the distinct antitumor effects of PI3K/AKT pathway inhibitors against PDAC cell lines. Aberrations in specific target genes, as well as KRAS and TP53, individually or together, affect the efficacy of the two PI3K/AKT pathway inhibitors.  相似文献   

16.
Cardiac interstitium is a complex and dynamic environment, vital for normal cardiac structure and function. Telocytes are active cellular players in regulating main events that feature myocardial homeostasis and orchestrating its involvement in heart pathology. Despite the great amount of data suggesting (microscopically, proteomically, genetically, etc.) the implications of telocytes in the different physiological and reparatory/regenerative processes of the heart, understanding their involvement in realizing the heart’s mature cytoarchitecture is still at its dawn. Our scrutiny of the recent literature gave clearer insights into the implications of telocytes in the WNT signaling pathway, but also TGFB and PI3K/AKT pathways that, inter alia, conduct cardiomyocytes differentiation, maturation and final integration into heart adult architecture. These data also strengthen evidence for telocytes as promising candidates for cellular therapies in various heart pathologies.  相似文献   

17.
The increased concern regarding the reduction in female fertility and the impressive numbers of women undergoing fertility treatment support the existence of environmental factors beyond inappropriate programming of developing ovaries. Among these factors are pyrethroids, which are currently some of the most commonly used pesticides worldwide. The present study was performed to investigate the developmental effects of the pyrethroid-based insecticide allethrin on ovarian function in rat offspring in adulthood. We mainly focused on the roles of oxidative stress, apoptosis, autophagy and the related pathways in ovarian injury. Thirty-day-old Wistar albino female rats were intragastrically administered 0 (control), 34.2 or 68.5 mg/kg body weight allethrin after breeding from Day 6 of pregnancy until delivery. We found that allethrin-induced ovarian histopathological damage was accompanied by elevations in oxidative stress and apoptosis. Interestingly, the number of autophagosomes in allethrin-treated ovaries was higher, and this increase was correlated with the upregulated expression of genes and proteins related to the autophagic marker LC-3. Furthermore, allethrin downregulated the expression of PI3K, AKT and mTOR in allethrin-treated ovaries compared with control ovaries. Taken together, the findings of this study suggest that exposure to the pyrethroid-based insecticide allethrin adversely affects both the follicle structure and function in rat offspring during adulthood. Specifically, allethrin can induce excessive oxidative stress and defective autophagy-related apoptosis, probably through inactivation of the PI3K/AKT/mTOR signaling pathway, and these effects may contribute to ovarian dysfunction and impaired fertility in female offspring.  相似文献   

18.
Many long noncoding RNAs have been implicated in tumorigenesis and chemoresistance; however, the underlying mechanisms are not well understood. We investigated the role of PRKAR1B-AS2 long noncoding RNA in ovarian cancer (OC) and chemoresistance and identified potential downstream molecular circuitry underlying its action. Analysis of The Cancer Genome Atlas OC dataset, in vitro experiments, proteomic analysis, and a xenograft OC mouse model were implemented. Our findings indicated that overexpression of PRKAR1B-AS2 is negatively correlated with overall survival in OC patients. Furthermore, PRKAR1B-AS2 knockdown-attenuated proliferation, migration, and invasion of OC cells and ameliorated cisplatin and alpelisib resistance in vitro. In proteomic analysis, silencing PRKAR1B-AS2 markedly inhibited protein expression of PI3K-110α and abrogated the phosphorylation of PDK1, AKT, and mTOR, with no significant effect on PTEN. The RNA immunoprecipitation detected a physical interaction between PRKAR1B-AS2 and PI3K-110α. Moreover, PRKAR1B-AS2 knockdown by systemic administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with PRKAR1B-AS2–specific small interfering RNA enhanced cisplatin sensitivity in a xenograft OC mouse model. In conclusion, PRKAR1B-AS2 promotes tumor growth and confers chemoresistance by modulating the PI3K/AKT/mTOR pathway. Thus, targeting PRKAR1B-AS2 may represent a novel therapeutic approach for the treatment of OC patients.  相似文献   

19.
20.
Background: Due to its prominence in the regulation of metabolism and inflammation, adipose tissue is a major target to investigate alterations in insulin action. This hormone activates PI3K/AKT pathway which is essential for glucose homeostasis, cell differentiation, and proliferation in insulin-sensitive tissues, like adipose tissue. The aim of this work was to evaluate the impact of chronic and intermittent high glucose on the expression of biomolecules of insulin signaling pathway during the differentiation and maturation of human visceral preadipocytes. Methods: Human visceral preadipocytes (HPA-V) cells were treated with high glucose (30 mM)during the proliferation and/or differentiation and/or maturation stage. The level of mRNA (by Real-Time PCR) and protein (by Elisa tests) expression of IRS1, PI3K, PTEN, AKT2, and GLUT4 was examined after each culture stage. Furthermore, we investigated whether miR-29a-3p, miR-143-3p, miR-152-3p, miR-186-5p, miR-370-3p, and miR-374b-5p may affect the expression of biomolecules of the insulin signaling pathway. Results: Both chronic and intermittent hyperglycemia affects insulin signaling in visceral pre/adipocytes by upregulation of analyzed PI3K/AKT pathway molecules. Both mRNA and protein expression level is more dependent on stage-specific events than the length of the period of high glucose exposure. What is more, miRs expression changes seem to be involved in PI3K/AKT expression regulation in response to hyperglycemic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号