首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
The initial and residual fertilizer effectiveness of North Carolina RP (rock phosphate), monocalcium phosphate and partially acidulated RP (made from North Carolina RP at 30% acidulation), both granulated and non-granulated, were measured in a glasshouse experiment. Triticale (xTriticosecale) was grown for 30 days on a soil that had been adjusted to three pH values (4.2, 5.2 and 6.2). Two crops were grown with a six month interval between crops. The effectiveness of the different fertilizers was compared using relationships between (1) yield of dried tops and the amount of P applied and (2) P content (P concentration in tissue multiplied by yield) and the amount of P applied. For the first crop, relative effectiveness (RE) of the fertilizers was calculated relative to granulated monocalcium phosphate, the most effective fertilizer. Monocalcium phosphate was not applied to the second crop, so relative residual effectiveness (RRE) was estimated for each fertilizer relative to the residual effectiveness of granulated monocalcium phosphate.The relative effectiveness of granulated monocalcium phosphate (band application) was greater (RE = 1.00) than of North Carolina RP (0.01–0.02) and partially acidulated RP (0.45–0.76) for all three soil pH values for the first crop. Granulation and band application increased the effectiveness of monocalcium phosphate and partially acidulated RP, but reduced the effectiveness of North Carolina RP. Both non-granulated monocalcium phosphate and partially acidulated RP were less effective than granulated partially acidulated RP for both crops. For the second crop granulated monocalcium phosphate was most effective and the RRE of non-granulated partially acidulated RP (0.16–0.32) and North Carolina RP (0.19–0.28) was greater than for non-granulated monocalcium phosphate (0.12). For the more acidic soil the RE of non-granulated North Carolina RP was four times higher than for the high pH soil for the first crop and 60% higher for the second crop, but it was still poorly effective relative to granulated monocalcium phosphate. Granulated North Carolina RP was least effective among all the fertilizers for all soil pH values and for both crops.  相似文献   

2.
The initial and residual agronomic effectiveness of six apatite rock phosphates from India, one from the USA (North Carolina) and one from Australia (Queensland) were evaluated in a pot trial with wheat on a lateritic soil. All of the Indian rock phosphates were very poor sources of phosphorus. Values of initial effectiveness relative to monocalcium phosphate ranged from < 0.0001 to 0.02 and from < 0.0001 to 0.008 for measurements based on yield and phosphorus uptake respectively. The residual effectiveness relative to freshly applied monocalcium phosphate was determined by growing a second crop on the fertilized soils. The effectiveness of the Indian rock phosphates remained very low ranging from < 0.0001 to 0.002 and from < 0.0001 to 0.0004 for yield and phosphorus uptake respectively. Queensland and North Carolina rock phosphates were much superior to the Indian sources with initial effectiveness values in terms of yield of 0.08 and 0.37 and residual effectiveness values of 0.02 and 0.15 respectively. For each crop there was a single relationship between yield and phosphorus uptake (i.e. internal efficiency) for all phosphorus sources showing that variations in yield response were due solely to differences in phosphorus availability. Sodium bicarbonate extractable phosphorus values for fertilized soils sampled shortly after fertilization were not predictive of yield unless different calibration curves were used for the different phosphorus fertilizers.  相似文献   

3.
Using pig slurry as starter fertilizer for maize (Zea mays L.), injected below the row prior to planting is a reasonable way to omit application of additional mineral fertilizer in areas with intensive animal farming. However, delayed early growth and a lack of knowledge on nutrient availability limit the interest of farmers. To extenuate farmers concerns a field trial was conducted in 2014 and 2015 to get detailed information on nitrogen (N) uptake, the subsequent influences on crop growth at different vegetative growth stages and final yield of silage maize. Besides an unfertilized control, two liquid manure injection treatments (without and with nitrification inhibitor [NI]) were compared to slurry broadcast application + mineral N and phosphorus (P) starter fertilizer at planting (MSF). In 2014, NI treatment yields increased (+16.5%) and N uptake increased (+9.6%) compared to broadcast treatment. In 2015, cold and dry conditions during early growth limited P plant availability and reduced crop growth in treatments without MSF. However, when a NI was added to the slurry prior to application, plants showed less P deficiency symptoms and better growth. At harvest no differences between the fertilized treatments were observed. In both years apparent N recovery was increased when manure was injected (48% without, and 56% with NI, respectively) compared to broadcast application of manure (43%) indicating that N losses were lower. However, further knowledge on soil N transformation and N loss pathways in systems with slurry injection is needed.  相似文献   

4.
Excessive fertilization is a common agricultural practice that often results in high risk of nitrogen (N) and phosphorus (P) losses in vegetable production in China. To reduce these losses, it is crucial to control residual nutrient levels in the rootzone and maintain crop growth. A 3-year field experiment was therefore conducted to investigate the effects of optimal fertigation (OF), OF combined with summer catch crop (OF-SCC; sweet corn with residue incorporation after harvest) or wheat straw application (OF-WSA; soil amended with wheat straw before cucumber seedling transplanting) on soil nutrients, soil residual N and P levels in the rootzone. The conventional management (flood irrigation with excessive fertilization and bare fallow during the summer period) served as control. The results showed that, although OF reduced irrigation amount, N input and P input by 49, 50 and 53%, respectively, it did not affect N and P uptake and fruit yields, and significantly reduced N and P surplus in the rootzone by 60 and 59%, respectively, when compared to the control. The SCC extracted 72–74 kg N ha?1 year?1 and 10–13 kg P ha?1 year?1 from soils. In addition, SCC and WSA increased soil soluble organic N in the rootzone but had little influence on N and P surplus. Generally, OF was efficient in reducing soil residual N and P, while SCC could temporarily retarded N leaching and improved nutrient recycling in the rootzone. Our results infer that OF combined with SCC is an efficient method for reducing soil N and P losses.  相似文献   

5.
North Carolina rock phosphate (NCRP) (highly carbonate—substituted apatite) was ground to produce three samples with different particle size distributions. The effectiveness of these fertilizers was compared with the effectiveness of superphosphate in a field experiment and three glasshouse experiments using lateritic soils from south-western Australia. Non-reactive Queensland rock phosphate (low carbonate-substituted apatite from the Duchess deposit) was also used in the pot experiments. Bicarbonate-soluble phosphorus extracted from the soil is widely used in Western Australia to predict plant yields from previously-applied fertilizer dressings. For both field and pot experiments bicarbonate-extractable phosphorus (soil test value) was measured and related to subsequent plant yields.As calculated from the initial slope of the relationship between yield and the level of P applied, finely powdered NCRP was about 5–32% as effective as freshly-applied superphosphate in the year of application and also for two years after application in the field experiment, and for two successive crops in the three pot experiments. For both field and pot experiments, finely powdered NCRP, was at best, 1.5–2.0 times as effective as granular NCRP. Relative to freshly-applied superphosphate, the effectiveness of rock phosphates usually decreased with increasing level of application.For each of the crops in the field experiment, the relationships between yield and phosphorus content of plants (i.e. internal efficiency curves) were similar for all fertilizers. Thus the low effectiveness of the rock phosphates relative to superphosphate was solely due to much less phosphorus being taken up by plants. By contrast, in the pot experiments internal efficiency curves differed for different fertilizers. This is attributed to differences in the rate of phosphorus uptake by plant roots during the early stages of plant growth.For both field and pot experiments, soil test calibrations (the relationship between yield and soil test value) differed for rock phosphates and superphosphate. For superphosphate, soil test calibrations also differed for the three different years after the initial application of this fertilizer in the field experiment. For the second crop in the pot experiment, soil test calibrations differed for superphosphate applied at different times (before the first and the second crop). These results point out the difficulty of applying soil testing procedures to soils that have experienced different histories of fertilizer application.  相似文献   

6.
Swedish arable land covers 3 Mha and its topsoil contains about 300 Mton C. The mineral soils seem to be close to steady-state, but the organic soils (about 10% of total arable land) have been estimated to lose ca. 1 Mton/year. We have devised a conceptual model (ICBMregion), using national agricultural crop yield/manuring statistics and allometric functions to calculate annual C input to the soil together with a five-parameter soil carbon model (ICBMr), calibrated using long-term field data. In Sweden, annual yield statistics are reported for different crops, for each of eight agricultural regions. Present topsoil carbon content and regional distribution of soil types have recently been measured. We use daily weather station data for each region together with crop type (bulked from individual crop data) and soil type to calculate an annual soil climate parameter for each crop/soil type permutation in each region. We use 14 soil types and 9 crop types, which gives 126 parameter sets for each year and region, each representing a fraction of the region's area. For each year, region, crop and soil type, ICBMregion calculates the change in young and old soil carbon per hectare, and sums up the changes to, e.g., national changes. With eight regions, we will have 1008 parameter sets per year, which easily can be handled, and what-if scenarios as well as comparisons between benchmark years are readily made. We will use the model to compare the soil C pools between the IPCC benchmark year 1990 and the present. In principle, we use inverse modelling from the sampled, recent soil C pools to estimate those in 1990. In the calculations, soil climate and yield for each year from 1990 onwards are taken into account. Then we can project soil C balances into the future under different scenarios, e.g., business as usual, land use change or changes in agricultural crops or cultivation practices. Projections of regional climate change are also available, so we can quite easily make projections of soil C dynamics under, e.g., different climate scenarios. We can follow the dynamic effects of carbon sequestration efforts – and estimate their efficiency. The approach is conceptually simple, fairly complete, and can easily be adapted to different needs and availability of data. However, perhaps the greatest advantage is that the results from this comprehensive approach used for, e.g., a 10-year period, can be condensed into a very simple spreadsheet model for calculating effects of management/land use changes on C stocks in agricultural soils.  相似文献   

7.
The agronomic effectiveness of two partially acidulated rock phosphate (PARP) fertilizers, made from either North Carolina or Moroccan apatite rock phosphate, and a fused calcium-magnesium phosphate (thermal phosphate or TP), was compared with the effectiveness of superphosphate in two glasshouse experiments. A different lateritic soil from Western Australia was used for each experiment. Oats (Avena sativa) were grown in one experiment and triticale (×Triticosecale) in the other. Fertilizer effectiveness was measured using (i) yield of dried tops, (ii) P content (P concentration in tissue multiplied by yield) of dried tops, and (iii) bicarbonate-extractable soil P (soil test value).The following relationships differed for the different fertilizers: (i) yield of dried tops and P content in the dried tops; (ii) yield and soil test values. Consequently the fertilizer effectiveness values calculated using yield data differed from those calculated using P content or soil test data. Freshly-applied superphosphate was always the most effective fertilizer regardless of the method used to calculate fertilizer effectiveness values. For one of the soils, as calculated using yield data, relative to freshly-applied superphosphate, the PARP and TP fertilizers were 15 to 30% as effective for the first crop, and 20 to 50% as effective for the second crop. The second soil was more acidic, and for the first crop the PARP and TP fertilizers were 80 to 90% as effective as freshly-applied superphosphate, but all fertilizers were only 5 to 15% as effective for the second crop. For each soil, the two PARP fertilizers had similar fertilizer effectiveness values. Generally the TP fertilizer was more effective than the PARP fertilizers.  相似文献   

8.
Soil organic carbon (SOC) constitutes a large pool within the global carbon cycle. Land use change significantly drives SOC stock variation. In tropical central and eastern Africa, how changes in land use and land cover impact on soil C stocks remains unclear. Variability in the existing data is typically explained by soil and climate factors with little consideration given to land use and management history. To address this knowledge gap, we classified the current and historical land cover and measured SOC stocks under different land cover, soil group and slope type in the humid zone of south-west Rwanda. It was observed that SOC levels were best explained by contemporary land cover types, and not by soil group, conversion history or slope position, although the latter factors explained partly the variation within annual crop land cover type. Lack of the influence of land use history on SOC stocks suggests that after conversion to a new land use/land cover, SOC stocks reached a new equilibrium within the timestep that was observed (25 years). For conversion to annual crops, SOC stocks reach a new equilibrium at about 2.5 % SOC concentration which is below the proposed soil fertility threshold of 3 % SOC content in the Eastern and central African region. SOC stock declined under transitions from banana-coffee to annual crop by 5 % or under transitions from natural forest to degraded forest by 21 % and increased for transitions from annual crops to plantation forest by 193 %. Forest clearing for agricultural use resulted in a loss of 72 %. Assuming steady states, the data can also be used to make inferences about SOC changes as a result of land cover changes. We recommend that SOC stocks should be reported by land cover type rather than by soil groups which masks local land cover and landscape differences. This study addresses a critical issue on sustainable management of SOC in the tropics and global carbon cycle given that it is performed in a part of the world that has high land cover dynamics while at the same time lacks data on land cover changes and SOC dynamics.  相似文献   

9.
Field trials were carried out between 2002 and 2005 to investigate the effects of biogas digestion in a mixed organic dairy farming system with arable land and grassland on nutrient cycling, nitrogen (N) uptake and crop yields within a cropping system comprising a whole crop rotation. Five treatments were carried out: (i) solid farmyard manure, (ii) undigested liquid slurry, (iii) digested liquid slurry, (iv) digestion of liquid slurry and field residues such as crop residues and cover crops, and (v) similar to iv, but with additional N inputs at the equivalent of 40 kg N ha−1 farmland through digestion of purchased substrates. The term “manure” is used in the present study to mean all kind of aboveground organic residues left on the field (“immobile manures”, such as crop residues and green manures incorporated directly into the soil) or added as stable wastes or effluents of biogas digestion (“mobile manures”). The total aboveground biomass growth and the overall aboveground N uptake of non-legume maincrops were higher in the liquid slurry manure treatment than in the solid farmyard manure system (+5% and +9%, respectively). The digestion of the liquid slurry increased N uptake and crop yields only after soil incorporation of the slurry shortly after field spreading. The additional collection and digestion of field residues such as cover crops and crop residues, combined with a reallocation of the effluents, strongly increased the amounts of “mobile” manure, allowing a more focussed allocation of the available N. This led to an increase in the aboveground N uptake (+12%) and biomass yield (+4%) of the five non-legume crops, due to a better adapted allocation of nutrients in space and time. Results obtained with spring wheat showed that removal of cover crops in autumn, and their digestion, combined with subsequent use as manure in spring resulted in a better synchronisation of the crop N demand and the soil N availability, in comparison with a strategy where the biomass was left on the field as green (immobile) manure. The inclusion of external substrates led to a further increase of 8% in N uptake, but not to a significant increase in aboveground dry matter yields.  相似文献   

10.
In a field experiment in Western Australia, six different levels of three different phosphorus (P) fertilizers (triple superphosphate, TSP; Queensland (Duchess) rock phosphate, QRP; North Carolina rock phosphate, NCRP) were applied at the start of the experiment in 1984. Grain yield of triticale (×Triticosecale) was measured from 1984 to 1988. In February-March of each year from 1985 to 1988, soil samples were collected to measure soil extractable P (soil test values) using four reagents (Bray 1, calcium acetate lactate (CAL), Truog and Colwell). Soil test values were related to triticale grain yields, determined either as absolute yield or percentage of the maximum yield, produced later on in each year. The relationship differed with fertilizer type, reagent and year. All four soil test reagents were equally predictive of yield. It is concluded that these soil P tests provide crude predictions of plant yield regardless of the reagent used.  相似文献   

11.
The agronomic effectiveness of P fertilizers, as sources of phosphorus for crops, was evaluated using the quantities, Pf, of phosphorus taken up byLolium perenne grown on 14 soils during greenhouse experiments in pot cultures. The Pf quantities were determined using32P-labelled fertilizers. Data were analysed using a new concept: the Isotopic Relative Agronomic Effectiveness (IRAE). The IRAE value was defined as the ratio of the Pf quantity, taken up by a crop, of a tested fertilizer over the Pf quantity, taken up by a crop, of a fertilizer used as standard. In our experiments diammonium phosphate (DAP) was used as standard P fertilizer and two rock phosphates, the North Carolina rock phosphate (NCPR) and a calcium-iron-aluminium phosphate (Phospal), were tested. As a linear relationship between Pf(NCPR) quantities and Pf(DAP) quantities was obtained, with r2 = 0.95, when the application rates increased from 15 mgP (kg soil)–1 to 200 mgP (kg soil)–1, it is conciuded that IRAE values for a given fertilizer, other than the standard fertilizer, could be determined with a single rate of application. As regards soil pH in the range 4.7 to 8.2 the IRAENCPR is related to soil pH by a curvilinear relationship: log IRAENCPR = –(0.44) pH + 4.05 with r2 = 0.89. The average of IRAEphospal values was 0.15 with a standard error = 7% irrespective of soil pH. Then a logarithmic relationship was obtained between IRAE values of the two tested fertilizers and their water P-solubility determined at the soil pH where they were applied.  相似文献   

12.
The agronomic effectiveness of two natural phosphate rocks (PRs) from North Carolina (USA) and Togo and their 50% partially acidulated products (PAPRs) was evaluated in two greenhouse experiments using32P isotopic dilution techniques, namely L and AL values.In the first experiment rye grass was grown in a soil from Ghana. While the proportion of P in the plant derived from the P fertilizer (Pdff) ranged on. the average from about 10% for the PRs up to 80% for the PAPRs, the P fertilizer recovery was less than 1% for a 60-day growth period. In the second experiment, average values of P in the maize plants derived from the PAPRs ranged from 35% to 75% in 3 different soils. Both PRs were ineffective with the exception of North Carolina PR in the Seibersdorf soil. The P fertilizer recovery was 0.25% for the North Carolina PR in this soil whereas the recovery values ranged from 1.2% to 1.6% for the PAPRs.Mean values of the relative fertilizer efficiency estimated from the L values of each soil were less than 1% for the PRs whereas the values for the PAPRs which were dependent on soil type ranged from 20% up to 45%. The coefficient of relative effect of partial acidulation, that was calculated from the ratio of AL values for PR and PAPR in each soil indicated that partial acidulation increased the effectiveness of the natural PRs in all soils under study.This study showed that the use of32P isotope dilution techniques allows an accurate measurement of the P availability from natural and modified PR products to crops. Another advantage is that quantitative comparison of the P sources under study, PRs and PAPRs in this case, can be made even in soils where there is no response to the applied P sources.  相似文献   

13.
The Pi, Colwell, Bray 1, calcium acetate lactate (CAL) and Truog phosphorus (P) soil test reagents were assessed in two field experiments on lateritic soils in Western Australia that had been fertilized four years previously (1984) with triple superphosphate, North Carolina rock phosphate, Queensland rock phosphate, and in one experiment, Calciphos. Soil samples to measure soil P test were collected February 1987. Soil P test was related to seed (grain) yields measured later in 1987. Different crop species were grown on different sections of the same plot at each site. The species were lupins (Lupinus angustifolius), barley (Hordeum vulgare) and oats (Avena sativa) at one site, and lupins, oats, triticale (×Triticosecale) and rapeseed (Brassica napus) at the other site. For each reagent, the soil P test calibration, which is the relationship between yield, expressed as a percentage of the maximum yield, and soil P test, generally differed for different plant species and for different fertilizer types. Variations in soil P test required to produce half the maximum yield of each species at each site was least for the CAL reagent followed by the Colwell reagent.  相似文献   

14.
中国西北地区肥料使用和生产现状及问题   总被引:5,自引:0,他引:5  
利用统计资料和农户调查资料综合分析了中国西北地区肥料使用和生产现状及问题。结果表明,西北地区虽然可耕地面积小,耕地质量差,仍是全国重要的农产品生产基地之一;各省(区)土地利用状况各具特色,可利用潜力较大;近年来西北地区肥料用量增长减缓,单质氮、磷肥基本稳定,钾肥和复合肥在增加;各省(区)施用肥料的结构以氮肥为主,复合肥次之,钾肥比例很低;单位种植面积施肥量低于全国水平;西北地区主要作物施肥量差别很大,其中蔬菜、棉花施肥量最多,小麦、玉米居中,豆类、薯类和油料类较少。多年来化肥生产量一直低于消费量,但氮肥发展为供大于求。综合分析认为,作物生产用肥量尚有进一步增长的可能性,需进一步研究草地用肥的可能性。应注意土地合理利用、施肥效果、施肥量和草地施肥等问题。  相似文献   

15.
Increasingly, model-based approaches play a role in the design and development of new land use systems. Simulation modeling may play a role in the generation of land use systems for land units, and optimization modeling (e.g. linear programming – LP) may be used in the upscaling to farm and region. In the quantification of new land use systems for land units, often equilibrium conditions with respect to soil resources are assumed, following a so-called target-oriented approach. This facilitates ex ante computation of inputs and emissions of nutrients and allows their use in static optimization models based on LP. The condition of equilibrium in soil resources is often not met, nor is it the ultimate aim. Hence, the dynamics in new systems are insufficiently dealt with. This paper presents an approach for the design of land use systems (crop rotations) and their quantification in terms of input and output coefficients, using particular yields and dynamics in soil resources as targets. Interactions between N input and output of succeeding crops are explicitly taken into account. A simple N-balance model is used describing major processes affecting soil N-dynamics. For the Koutiala region in Mali five crop rotations are evaluated that differ in target crop yield, crop choice, crop residue management and external N source. Modeled crop rotations aiming at high yields, in combination with incorporation of crop residues and legumes, result in depletion of soil N stock. Only in crop rotations aiming at high yields and with incorporation of crop residues combined with a supply of large quantities of animal manure, soil N depletion can be prevented. Four approaches are presented of how to use the dynamic input–output coefficients of these systems in land use studies using LP: (i) use of average coefficients, (ii) use of discounted coefficients, (iii) use of pessimistic estimates of coefficients in an optimization of the land use allocation followed by a recalculation of the objective values for the optimized land use with optimistic coefficients, and (iv) a combined use of systems characteristics, i.e. cumulative N-inputs of land use systems over the time horizon and the magnitude of the soil N pool at the end of the time horizon, which can be used as filters for land use systems. Though none of the approaches completely captures the dynamics in input–output coefficients, they enable a well-founded consideration of the consequences of dynamics in, for instance, soil N stocks in static optimization approaches for farm and regional studies.  相似文献   

16.
Phosphate rocks partially acidulated either with H3PO4 or H2SO4 were compared against SSP or TSP as phosphate fertilizers for permanent pasture. Eleven field trials were conducted over periods of up to 6 yrs. Fertilizers were surface applied annually. Initial soil pHw values ranged from 5.5–6.3 and Soil P retention from 25% to 97%. The PRs used for partial acidulation were unground or ground North Carolina PR, ground Khouribga PR, and a blend of ground PRs of North Carolina, Arad and Khouribga PRs. From the DM yields, fertilizer substitution values were calculated: fertilizer substitution value was the ratio of total P applied as superphosphate to total P as PAPR required to produce the same DM yield.Rates of dissolution of the PR component of PAPRs were also determined in soils collected from two trials.Agronomic results demonstrated that 30% acidulated phosphoric PAPRs (about 50% of total P as water-soluble P) were as effective as TSP, when the PR acidulated was from unground North Carolina PR. Results from one field trial indicated that when PAPR was from ground North Carolina PR, 20% acidulated product (water-soluble P 30–40% of total P) was equally effective as TSP. Replacement of ground North Carolina PR by a less reactive Khouribga PR did not appear to decrease the yield. Results indicated that per unit P released into soil solution, PAPRs were more efficient fertilizers than TSP. With annual applications, fertilizer substitution value of PAPR 30% tended to increase with time.Sulphuric PAPRs prepared from North Carolina PR were generally inferior to phosphoric PAPRs containing similar amounts of water-soluble P. This was attributed to the presence of CaSO4 coatings.Abbreviations DM Dry matter - PAPR Partially acidulated phosphate rock - PR Phosphate rock - SSP Single superphosphate - TSP Triple superphosphate  相似文献   

17.
The environmentally-sound management of agricultural phosphorus   总被引:17,自引:0,他引:17  
Freshwater eutrophication is often accelerated by increased phosphorus (P) inputs, a greater share of which now come from agricultural nonpoint sources than two decades ago. Maintenance of soil P at levels sufficient for crop needs is an essential part of sustainable agriculture. However, in areas of intensive crop and livestock production in Europe and the U.S.A., P has accumulated in soils to levels that are a long-term eutrophication rather than agronomic concern. Also, changes in land management in Europe and the U.S.A. have increased the potential for P loss in surface runoff and drainage. There is, thus, a need for information on how these factors influence the loss of P in agricultural runoff. The processes controlling the build-up of P in soil, its transport in surface and subsurface drainage in dissolved and particulate forms, and their biological availability in freshwater systems, are discussed in terms of environmentally sound P management. Such management will involve identifying P sources within watersheds; targeting cost-effective remedial measures to minimize P losses; and accounting for different water quality objectives within watersheds. The means by which this can be achieved are identified and include developing soil tests to determine the relative potential for P enrichment of agricultural runoff to occur; establishing threshold soil P levels which are of environmental concern; finding alternative uses for animal manures to decrease land area limitations for application; and adopting management systems integrating measures to reduce P sources as well as runoff and erosion potential.  相似文献   

18.
Conservation tillage and judicious use of animal manures as fertilizers can make significant contributions for sustainable food production in the twenty-first century. Identifying and understanding the many interactions occurring within agricultural systems is fundamental for accomplishing this feat. This paper synthesizes 14 years of research results from a study that began in the early 1990s in which researchers from USDA-ARS and the University of Georgia investigated cropping system influences on nutrient management under natural rainfall. Increases in C and N with no-till resulted in improved soil structure that increased infiltration rate and soil water availability. Biological activity as indicated by earthworms was greater with no-till and poultry litter (PL). In all but the very driest year, yields of cotton and corn increased on average 10–27% with no-till and 32–42% with combination of no-till and PL. On the other hand soil nutrient accumulation, particularly P and Zn from long-term use of poultry litter in corn production, reached excessive levels and could present environmental risks. Drainage increased in no-till raising the risk of leaching of nutrients into the soil profile. However, runoff decreased in no-till and the presence of a rye cover crop during the winter reduced the leaching losses of N compared to no cover crop. During cotton production under relative drought, no-till and poultry litter led to somewhat elevated dissolved phosphorus concentration in runoff, and fluometuron was detected in runoff and drainage while pendimethalin was not. Fecal indicator bacteria (Escherichia coli and fecal enterococci), and the hormones estradiol and testosterone were observed in drainage and runoff but concentrations were similar across all treatments. By conducting the study for an extended period under natural environmental conditions, we were able to highlight real risks and potentials of the contrasting cropping systems. While 6 out of 14 years of relative drought might have limited the water quality response of treatments, such droughts are common features of the weather pattern in the region. Even then, use of no-till as the predominant tillage system was supported by improved yields. Fertilizer management, especially crop N need-based use of PL, requires closer monitoring to insure that production advantages of no-till and poultry litter are not offset by concerns with environmental risks. Long-term research requires sustained resource inputs to answer critical questions of environmental risk and emerging unknown issues.  相似文献   

19.
Crop simulation models have been used successfully to evaluate many systems and the impact of change on these systems, e.g. for climatic risk and the use of alternative management options, including the use of nitrogen fertilisers. However, for low input systems in tropical and subtropical regions where organic inputs rather than fertilisers are the predominant nutrient management option and other nutrients besides nitrogen (particular phosphorus) constrain crop growth, these models are not up to the task. This paper describes progress towards developing a capability to simulate response to phosphorus (P) within the APSIM (Agricultural Production Systems Simulator) framework. It reports the development of the P routines based on maize crops grown in semi-arid eastern Kenya, and validation in contrasting soils in western Kenya and South-western Colombia to demonstrate the robustness of the routines. The creation of this capability required: (1) a new module (APSIM SoilP) that simulates the dynamics of P in soil and is able to account for effectiveness of alternative fertiliser management (i.e. water-soluble versus rock phosphate sources, placement effects); (2) a link to the modules simulating the dynamics of carbon and nitrogen in soil organic matter, crop residues, etc., in order that the P present in such materials can be accounted for; and (3) modification to crop modules to represent the P uptake process, estimation of the P stress in the crop, and consequent restrictions to the plant growth processes of photosynthesis, leaf expansion, phenology and grain filling. Modelling results show that the P routines in APSIM can be specified to produce output that matches multi-season rotations of different crops, on a contrasting soil type to previous evaluations, with very few changes to the parameterization files. Model performance in predicting the growth of maize and bean crops grown in rotation on an Andisol with different sources and rates of P was good (75–87% of variance could be explained). This is the first published example of extending APSIM P routines to another crop (beans) from maize. Dr R. J. Delve has recently left CIAT and joined Catholic Relief Services, Kenya.  相似文献   

20.
In a field experiment in a Mediterranean climate (474 mm annual rainfall, 325 mm (69%) falling in the May to October growing season) on a deep sandy soil near Kojaneerup, south-western Australia, the residual value of superphosphate was measured relative to freshly-applied superphosphate. The grain yield of five successive crops (1988–1992) was used to measure the residual value: barley (Hordeum vulgare), barley, oat (Avena sativa), lupin (Lupinus angustifolius), and barley. There was no significant yield response to superphosphate applied to the first crop (barley, cv. Moondyne). There were no results for the second crop (barley) due to weeds or the fourth crop (lupin) due to severe wind erosion which damaged the crop. The residual value of superphosphate was measured using grain yields of the third crop (oat, cv. Mortlock) for superphosphate applied one and two years previously, and the fifth crop (barley, cv. Onslow) for superphosphate applied one, two, three and four years previously. In February 1992, before sowing the fifth crop, soil samples were collected to measure bicarbonate-extractable phosphorus (P) (soil test P) which was related to the subsequent grain yields of that crop. This relationship is the soil test P calibration used to estimate the current P status of soils when providing P fertilizer recommendations.The residual value of superphosphate declined markedly. For the third crop (oat), it was 6% as effective as freshly-applied superphosphate one year after application, and 2% as effective two years after application. For the fifth crop (barley), relative to freshly-applied superphosphate, the residual value of superphosphate in successive years after application was 46%, 6%, 3% and 2% as effective. The soil has a very low capacity to sorb P, and P was found to leach down the soil profile. The largest yield for P applied one and two years previously in 1990, and two, three and four years previously in 1992, was 35 to 50% lower than the maximum yield for freshly-applied P.Soil test P was very variable (coefficient of variation was 32%) and mostly less than 8µg P/g soil. The calibration relating yield (y axis) to soil test P (x axis) differed for soil treated with superphosphate one year previously compared with soil treated two, three and four years previously. The top 10 cm of soil was used for soil P testing, the standard depth. P was leached below this depth but some of the P leached below 10 cm may still have been taken up by plant roots. Consequently soil test P underestimated the P available to plants in the soil profile. The soil test P calibration therefore provided a very crude estimate of the current P status of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号