首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
黄仕华  陈焕 《材料导报》2012,26(8):147-149,156
假设镶嵌在介质层(如SiO2、SiC)中的纳米晶(如Si、Ge、Sn)为球形量子点,考虑到电子在纳米晶和介质层中的有效质量差异,对镶嵌在介质层中单电子的所有束缚态的能量和波函数进行精确求解,分析了量子点半径、势垒高度、电子有效质量等对能级的影响。计算结果表明,量子限制效应随着量子点半径的减小而急剧增强,不同材料电子的有效质量对电子能级也有重要影响。Sn纳米晶的半径为22nm左右,Ge的半径和Si的半径分别约为10nm和7nm时,能观察到较为明显的量子限制效应。本模型提出的计算方法快速而准确,并适用于任意尺寸、任意势垒和任意材料的球方势阱量子点系统。  相似文献   

2.
Frederick MT  Amin VA  Cass LC  Weiss EA 《Nano letters》2011,11(12):5455-5460
This paper describes unprecedented bathochromic shifts (up to 970 meV) of the optical band gaps of CdS, CdSe, and PbS quantum dots (QDs) upon adsorption of an organic ligand, phenyldithiocarbamate (PTC), and the use of PTC to map the quantum confinement of specific charge carriers within the QDs as a function of their radius. For a given QD material and physical radius, R, the magnitude of the increase in apparent excitonic radius (ΔR) upon delocalization by PTC directly reflects the degree of quantum confinement of one or both charge carriers. The plots of ΔR vs R for CdSe and CdS show that exciton delocalization by PTC occurs specifically through the excitonic hole. Furthermore, the plot for CdSe, which spans a range of R over multiple confinement regimes for the hole, identifies the radius (R~1.9 nm) at which the hole transitions between regimes of strong and intermediate confinement. This demonstration of ligand-induced delocalization of a specific charge carrier is a first step toward eliminating current-limiting resistive interfaces at organic-inorganic junctions within solid-state hybrid devices. Facilitating carrier-specific electronic coupling across heterogeneous interfaces is especially important for nanostructured devices, which comprise a high density of such interfaces.  相似文献   

3.
The two-photon absorption, 2PA, cross sections of PbS quantum dots, QDs, are theoretically and experimentally investigated and are shown to be enhanced with increasing quantum confinement. This is in contrast to our previous results for CdSe and CdTe QDs where the reduced density of states dominated and resulted in a decrease in 2PA with a decrease in QD size. Qualitatively this trend can be understood by the highly symmetric distribution of conduction and valence band states in PbS that results in an accumulation of allowed 2PA transitions in certain spectral regions. We also measure the frequency nondegenerate 2PA cross sections that are up to five times larger than for the degenerate case. We use a k·p four-band envelope function formalism to model the increasing trend of the two-photon cross sections due to quantum confinement and also due to resonance enhancement in the nondegenerate case.  相似文献   

4.
We demonstrate electronic energy transfer between resonance states of 2 and 2.8?nm CdTe quantum dots in aqueous media using steady-state photoluminescence spectroscopy without using any external linker molecule. With increasing concentration of larger dots, there is subsequent quenching of luminescence in smaller dots accompanied by the enhancement of luminescence in larger dots. Our experimental evidence suggests that there is long-range resonance energy transfer among electronic excitations, specifically from the electronically confined states of the smaller dots to the higher excited states of the larger dots.  相似文献   

5.
Nanoclusters of PbS embedded in polymer matrices have recently been shown to have interesting optical properties with the capability of tuning the effective band gap over a wide spectral range. The results of a systematic investigation of the preparation and characterization of size-tuned PbS nanocrystals stabilized in the polymer nanotemplate of Nafion and their size-dependent physical properties are presented in this paper. These nanocrystals exhibit large characteristic blueshift in optical absorption from the bulk absorption onset value of 3020 nm. XRD and HRTEM measurements indicate the presence of PbS nanocrystals in the size range of 2-6 nm, in the regime of strong quantum confinement. Thermal and electrical properties of the polymer are found to be influenced to a great extent by the embedded PbS nanocrystals.  相似文献   

6.
We report the solvothermal synthesis of colloidal cadmium sulfide quantum dots via a three-component system affording various particle diameter ranging from 3.368 nm to 8.411 nm. The band gap, and therefore the optical property, of these nanocrystals can be tuned by varying the reaction time and temperature of the system. The results obtained show strong confinement of particles with diameter smaller than the exciton Bohr radius of CdS. The growth kinetics was found to follow a diffusion-controlled process at the initial stage then shifts to a surface-controlled incorporation of reactants to the crystallite after the particle size becomes comparable to the exciton Bohr radius.  相似文献   

7.
The polaron ground state energy is obtained by using variational method of Pekar type on the condition of electric-LO phonon strong coupling in a quantum dot and ring. The relations of the polaron ground state energy on the inner confinement strength, the outer confinement strength, the inner and outer radius of quantum dot and ring are derived.  相似文献   

8.
The dimension-controlled synthesis of CdS nanocrystals in the strong quantum confinement regime is reported. Zero-, one-, and two-dimensional CdS nanocrystals are selectively synthesized via low-temperature reactions using alkylamines as surface-capping ligands. The shape of the nanocrystals is controlled systematically by using different amines and reaction conditions. The 2D nanoplates have a uniform thickness as low as 1.2 nm. Furthermore, their optical absorption and emission spectra show very narrow peaks indicating extremely uniform thickness. It is demonstrated that 2D nanoplates are generated by 2D assembly of CdS magic-sized clusters formed at the nucleation stage, and subsequent attachment of the clusters. The stability of magic-sized clusters in amine solvent strongly influences the final shapes of the nanocrystals. The thickness of the nanoplates increases in a stepwise manner while retaining their uniformity, similar to the growth behavior of inorganic clusters. The 2D CdS nanoplates are a new type of quantum well with novel nanoscale properties in the strong quantum confinement regime.  相似文献   

9.
Devizis A  Gulbinas V 《Applied optics》2008,47(10):1632-1637
Dynamics of the real and imaginary parts of the dielectric permittivity of a photoexcited silver layer has been investigated by means of femtosecond pump-probe spectroscopy in a surface plasmon resonance Kretschmann configuration. Both real and imaginary permittivity parts experience changes in the visible-near-IR regions under silver excitation at 400 nm. The changes are stronger, particularly those of the imaginary part, at longer wavelengths. Three excited states are formed during the relaxation process, which are attributed to the nonequilibrium and equilibrium heated electron distributions and lattice heating. Different time evolutions of the real and imaginary dielectric permittivity parts are explained by different contributions from interband and intraband transitions caused by plasma frequency and electron scattering frequency variations.  相似文献   

10.
Highly luminescent cadmium telluride (CdTe) nanocrystals were synthesized using Li(2)[Cd(4)(SPh)(10)] as a reactive Cd cluster compound at relatively low temperature, making it a safe precursor for the large scale synthesis of CdTe nanocrystals. Transmission electron microscopy (TEM) showed that the shape of the CdTe nanocrystals changes from nanorods to branched structures with increasing reaction time. The nanocrystals show high luminescent quantum yields up to 37% for CdTe branched nanostructures, and as high as 52% for CdTe/CdS core-shell heterostructures. CdTe/CdS nanocrystals were used to make light-emitting diodes in combination with organic layers for electron and hole injection. The devices show a maximum luminance efficiency of 0.35?cd?A(-1).  相似文献   

11.
We report room temperature fluorescence spectroscopy (FL) studies of ZnSe and Mn-doped ZnSe nanowires of different diameters (10, 25, 50?nm) produced by an electrochemical self-assembly technique. All samples exhibit increasing blue-shift in the band edge fluorescence with decreasing wire diameter because of quantum confinement. The 10?nm ZnSe nanowires show four distinct emission peaks due to band-to-band recombination, exciton recombination, recombination via surface states and via band gap (trap) states. The exciton binding energy in these nanowires exhibits a giant increase (~10-fold) over the bulk value due to quantum confinement, since the effective wire radius (taking into account side depletion) is smaller than the exciton Bohr radius in bulk ZnSe. The 25 and 50?nm diameter wires show only a single FL peak due to band-to-band electron-hole recombination. In the case of Mn-doped ZnSe nanowires, the band edge luminescence in 10?nm samples is significantly quenched by Mn doping but not the exciton luminescence, which remains relatively unaffected. We observe additional features due to Mn(2+) ions. The spectra also reveal that the emission from Mn(2+) states increases in intensity and is progressively red-shifted with increasing Mn concentration.  相似文献   

12.
The response of charge to externally applied electric fields is an important basic property of any material system, as well as one critical for many applications. Here, we examine the behaviour and dynamics of charges fully confined on the nanometre length scale. This is accomplished using CdSe nanocrystals of controlled radius (1-2.5 nm) as prototype quantum systems. Individual electron-hole pairs are created at room temperature within these structures by photoexcitation and are probed by terahertz (THz) electromagnetic pulses. The electronic response is found to be instantaneous even for THz frequencies, in contrast to the behaviour reported in related measurements for larger nanocrystals and nanocrystal assemblies. The measured polarizability of an electron-hole pair (exciton) amounts to approximately 10(4) A(3) and scales approximately as the fourth power of the nanocrystal radius. This size dependence and the instantaneous response reflect the presence of well-separated electronic energy levels induced in the system by strong quantum-confinement effects.  相似文献   

13.
Luminescent PbS nanocrystals have been synthesized by the colloidal method. PVA has been employed to modify the surface of prepared PbS nanocrystals and improve their optical properties. Optical and morphological characteristics of lead sulfide nanocrystals have been studied by high resolution electron microscopy and spectrophotometer. Optical absorption and photoluminescence (PL) studies of the PbS nanocrystals have shown the strong quantum confinement effects. For the first time, the prepared lead sulfide nanocrystals have emitted at 608 nm wavelength with narrow band width (21 nm) and high Stokes shift. Experimental results have shown that the surface charge traps have higher contribution to the optical properties of colloidal PbS nanocrystals and in our sample photoluminescence was due to hole relaxation. These properties made them a material with potential application in nanophotonics.  相似文献   

14.
Two possible InGaAs/GaAs quantum-well structures ensuring the presence of radiative transitions between the polariton states in a microresonator with a quantum well, which are accompanied by generation of terahertz photons, are discussed in this work. For the first structure, symmetry breakdown that is required for the emission of a terahertz photon is conducted in a quantum well with refractive index gradient profile, which results in mixing of the states of a polariton and a dark exciton. Parameters of the quantum well, in which the energy of the second exciton level corresponds to the upper polariton energy, are determined. A double quantum well with exciton states split due to quantum-mechanical tunneling through a barrier is used in the second structure. Symmetry breakdown, which allows one to mix an exciton with a “dark” exciton, is ensured by adjusting the energy of electron levels in a double quantum well by applying an electric field to the structure. A hole remains localized in one of the wells.  相似文献   

15.
The ground-state lifetime of polaron in disk-shape quantum dot (QD) has been investigated by using the variational method of Pekar type. Quantum transition is occurred in the quantum system due to the electron-phonon interaction and the influence of temperature. That is the polaron transit from the ground-state to the first-excited state after absorbing a LO-phonon and it causes the changing of the polaron lifetime. The result shows that the ground-state lifetime increases with the increasing of the ground-state energy and decreases with the increasing of the electron-LO-phonon coupling strength, the temperature and the confinement length. We also see that the influence of the longitudinal confinement length on the lifetime is larger than the transverse confinement length.  相似文献   

16.
We report that high quality PbS nanocrystals, synthesized in the strong quantum confinement regime, have quantum yields as high as 70% at room temperature. We use a combination of modelling and photoluminescence up-conversion to show that we obtain a nearly monodisperse size distribution. Nevertheless, the emission displays a large nonresonant Stokes shift. The magnitude of the Stokes shift is found to be directly proportional to the degree of quantum confinement, from which we establish that the emission results from the recombination of one quantum confined charge carrier with one localized or surface-trapped charge carrier. Furthermore, the surface state energy is found to lie outside the bulk bandgap so that surface-related emission only commences for strongly quantum confined nanocrystals, thus highlighting a regime where improved surface passivation becomes necessary.  相似文献   

17.
Sun J  Buhro WE  Wang LW  Schrier J 《Nano letters》2008,8(9):2913-2919
The size-dependent electronic structure of CdTe quantum wires is determined by density functional theory using the local density approximation with band-corrected pseudopotential method. The results of the calculations are then used to assign the size-dependent absorption spectrum of colloidal CdTe quantum wires synthesized by the solution-liquid-solid mechanism. Quantitative agreement between experiment and theory is achieved. The absorption features comprise transitions involving the highest 25-30 valence-band states and lowest 15 conduction-band states. Individual transitions are not resolved; rather, the absorption features consist of clusters of transitions that are determined by the conduction-band energy-level spacings. The sequence, character, and spacing of the conduction-band states are strikingly consistent with the predictions of the simple effective-mass-approximation, particle-in-a-cylinder model. The model is used to calculate the size dependence of the electron effective mass in CdTe quantum wires.  相似文献   

18.
Liu Y  Shen Q  Yu D  Shi W  Li J  Zhou J  Liu X 《Nanotechnology》2008,19(24):245601
One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660?nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.  相似文献   

19.
We report a detailed photoluminescence (PL) study on single silicon nanocrystals produced by laser pyrolysis. The PL spectra reveal nearly homogeneously broadened zero-phonon lines coupled to Si-O-Si phonon transitions in the SiO2 shell. A systematic investigation of electron-phonon coupling is reported on the basis of single nanocrystals. The stepwise localization of electron and hole at the Si-SiO2 interface for nanocrystals smaller than d approximately 2.7 nm is driven by electron-phonon coupling. From the localization energies the effective Bohr radii of the (localized) electron and hole are estimated to be in the range of 1-2 bond lengths of Si-O and Si-Si.  相似文献   

20.
We report on the synthesis of CdSe nanocrystal quantum dots (QDs) of different radii (R). Size dependent optical properties like increase in the confinement energy with decreasing radius for different excitonic transitions are studied. Different excitonic transitions are calculated from the second derivative of UV-vis absorption spectra of as synthesized CdSe QDs. The transitions are assigned to specific states by calculating the transition energies using effective mass approximation. A close matching of the transition energies with the experiment suggesting that the second derivative of the absorption spectra could provide a direct knowledge of the electronic transition for the direct band gap semiconductor quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号