首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study evaluated the feasibility of using a solid waste from the leather industry as an adsorbent for removal of Cr(VI) and As(V) from aqueous media. The adsorbent material was characterized by chemical analyses, infrared spectroscopy, and scanning electronic microscopy (SEM) prior to reaction in order to assess its surface properties. Langmuir and Freundlich equations were used for analyzing the experimental data, which showed a better fit to the Langmuir model, thus suggesting a monolayer adsorption process in the surface of the adsorbent. The high amounts of Cr(VI)-133 mg g(-1) and As(V)-26 mg g(-1) adsorbed demonstrates the great potential for using this solid waste from the leather industry as a low-cost alternative to the traditionally used adsorbent materials.  相似文献   

2.
Novel biosorbent 'maize bran' has been successfully utilized for the removal of Cr(VI) from aqueous solution. The effect of different parameters such as contact time, sorbate concentration, pH of the medium and temperature were investigated and maximum uptake of Cr(VI) was 312.52 (mgg(-1)) at pH 2.0, initial Cr(VI) concentration of 200mgL(-1) and temperature of 40 degrees C. Effect of pH showed that maize bran was not only removing Cr(VI) from aqueous solution but also reducing toxic Cr(VI) into less toxic Cr(III). The sorption kinetics was tested with first order reversible, pseudo-first order and pseudo-second order reaction and it was found that Cr(VI) uptake process followed the pseudo-second order rate expression. Mass transfer of Cr(VI) from bulk to the solid phase (maize bran) was studied at different temperatures. Different thermodynamic parameters, viz., DeltaG degrees , DeltaH degrees and DeltaS degrees have also been evaluated and it has been found that the sorption was feasible, spontaneous and endothermic in nature. The Langmuir and Freundlich equations for describing sorption equilibrium were applied and it was found that the process was well described by Langmuir isotherm. Desorption studies was also carried out and found that complete desorption of Cr(VI) took place at pH of 9.5.  相似文献   

3.
Removal of Cr(VI) from aqueous solutions using modified red pine sawdust   总被引:3,自引:0,他引:3  
The adsorption of Cr(VI) from aqueous solutions on sawdust (SD), base extracted sawdust (BESD) and tartaric acid modified sawdust (TASD) of Turkish red pine tree (Pinus nigra), a timber industry waste, was studied at varying Cr(VI) concentrations, adsorbent dose, modifier concentration and pH. Batch adsorption studies have been carried out. Sawdust was collected from waste timber industry and modified with various amount of tartaric acid (TA) (0.1-1.5M). The batch sorption kinetics has been tested and the applicability of the Langmuir and Freundlich adsorption isotherms for the present system has been tested at 25+/-2 degrees C. Under observed test conditions, the equilibrium adsorption data fits the linear Freundlich isotherms. An initial pH of 3.0 was most favorable for Cr(VI) removal by all adsorbents. Maximum Cr(VI) was sequestered from the solution within 120 min after the beginning for every experiment. The experimental result inferred that chelation and ion exchange is one of the major adsorption mechanisms for binding metal ions to the SD. Percentage removal of Cr(VI) was maximum at the initial pH of 3.0 (87.7, 70.6 and 55.2% by TASD, BESD, and SD, respectively). Adsorption capacities range from 8.3 to 22.6 mg/g for SD samples.  相似文献   

4.
In this study, adsorption of Cr(VI) onto the four low-cost biosorbents (Laminaria japonica, P. yezoensis Ueda, rice bran and wheat bran) was investigated depending on solution pH, contact time, adsorbent concentration and adsorption isotherms by employing batch adsorption technique. The adsorption capacities were significantly influenced by solution pH, with lower pH favoring higher Cr(VI) removal for various biosorbents. The ionic strength of NaCl was also observed to have a significant impact on the Cr(VI) adsorption due to the competition of Cl(-) in the aqueous solutions. The batch equilibrium data were correlated to Langmuir and Freundlich isotherms and the data fitted better to the Freundlich isotherm equation. The apparent thermodynamic parameters were calculated for each of the four biosorbents and the obtained numerical values showed that the Cr(VI) adsorption onto the various low-cost biosorbents is spontaneous, entropy-driven and endothermic processes. The batch kinetic data were correlated to the pseudo-first order and pseudo-second order models and the data fitted better to the pseudo-second order equation. An intraparticle diffusion model was applied to investigate the adsorption mechanisms. The adsorption capacities for various biosorbents studied in this work were inversely proportional to the adsorbent concentrations.  相似文献   

5.
Cr(VI) reduction in aqueous solutions by siderite   总被引:1,自引:0,他引:1  
Hexavalent chromium is a common and toxic pollutant in soils and wastewaters. Reduction of the mobile Cr(VI) to less mobile and less toxic Cr(III) is a solution for decontamination of industrial effluents. In this study, the reduction of hexavalent chromium in aqueous solutions by siderite was investigated. The influences of amount of acid, contact time, siderite dosage, initial Cr(VI) concentration, temperature and particle size of siderite have been tested in batch runs. The process was found to be acid, temperature and concentration dependent. The amount of acid is the most effective parameter affecting the Cr(VI) reduction since carbonaceous gangue minerals consume acid by side reactions. The highest Cr(VI) reduction efficiency (100%) occurred in the 50 mg/l Cr(VI) solution containing two times acid with respect to stoichiometric amount of Cr(VI) and at the conditions of siderite dosage 20 g/l, contact time 120 min and temperature 25 degrees C. Reduction efficiency increased with increase in temperature and decrease in particle size. The reduction capacity of siderite was found to be 17 mg-Cr(VI)/g.  相似文献   

6.
Adsorption of Cr(VI) onto spent activated clay (SAC), a waste produced from an edible oil refinery company, was investigated for its beneficial use in wastewater treatment. After pressure steam treatment, SAC was used as an adsorbent. The adsorption kinetic data were analyzed and fitted well in a pseudo-first-order equation and the rate of removal was found to speed up with decreasing pH and increasing temperature. Activation energy for the adsorption process was found to be 4.01–5.47 kcal/K mol. The Langmuir adsorption isotherm was used to fit the equilibrium data and the effect of pH, temperature and ionic strength were studied. The maximum adsorption capacities for Cr(VI) ranged from 0.743 to 1.422 mg/g for temperature between 4 and 40 °C under a condition of pH 2.0. The studies conducted show the process of Cr(VI) removal to be spontaneous at high temperature and endothermic in nature. From the waste utilization and environment point of view, the work carried out is important and useful. Results obtained can serve as baseline data for designing a treatment process using this low-cost adsorbent for the treatment of wastewater rich in Cr(VI).  相似文献   

7.
8.
In this study, biosorption of Cr (VI) ion was investigated by using biomass of Agaricus bisporus (a species of mushroom) in a temperature and shaking speed controlled shaker. The effect of shaking speed, biomass concentration, initial metal ion concentration and initial pH on biosorption yield was determined and the fitness of biosorption data for Freundlich and Langmuir adsorption models was investigated. Optimum biosorption conditions were found to be pH 1, C0=50 mg/l, m=10 g/l, shaking speed=150 rpm, T=20 degrees C Cr (VI), respectively. It was found that biosorption of Cr (VI) ions onto biomass of A. bisporus was better suitable to Freundlich adsorption model than Langmuir adsorption model. The correlation coefficients for the second-order kinetic model obtained were found to be 0.999 for all concentrations. These indicate that the biosorption system studied belongs to the second-order kinetic model.  相似文献   

9.
Diatomite-supported/unsupported magnetite nanoparticles were prepared by co-precipitation and hydrosol methods, and characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the unsupported and supported magnetite nanoparticles are around 25 and 15 nm, respectively. The supported magnetite nanoparticles exist on the surface or inside the pores of diatom shells, with better dispersing and less coaggregation than the unsupported ones. The uptake of hexavalent chromium [Cr(VI)] on the synthesized magnetite nanoparticles was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium [Cr(III)]. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed a pseudo-second-order model. The adsorption data of diatomite-supported/unsupported magnetite fit well with the Langmuir isotherm equation. The supported magnetite showed a better adsorption capacity per unit mass of magnetite than unsupported magnetite, and was more thermally stable than their unsupported counterparts. These results indicate that the diatomite-supported/unsupported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.  相似文献   

10.
The removal of Cr(VI) from aqueous solution by rice straw, a surplus agricultural byproduct was investigated. The optimal pH was 2.0 and Cr(VI) removal rate increased with decreased Cr(VI) concentration and with increased temperature. Decrease in straw particle size led to an increase in Cr(VI) removal. Equilibrium was achieved in about 48 h under standard conditions, and Cr(III), which appeared in the solution and remained stable thereafter, indicating that both reduction and adsorption played a part in the Cr(VI) removal. The increase of the solution pH suggested that protons were needed for the Cr(VI) removal. A relatively high level of NO(3)(-) notably restrained the reduction of Cr(VI) to Cr(III), while high level of SO(4)(2-) supported it. The promotion of the tartaric acid modified rice straw (TARS) and the slight inhibition of the esterified rice straw (ERS) on Cr(VI) removal indicated that carboxyl groups present on the biomass played an important role in chromium remediation even though were not fully responsible for it. Isotherm tests showed that equilibrium sorption data were better represented by Langmuir model and the sorption capacity of rice straw was found to be 3.15 mg/g.  相似文献   

11.
This paper reports the feasibility of using pre-consumer processing agricultural waste to remove Cr(VI) from synthetic wastewater under different experimental conditions. For this, rice husk, has been used after pre-treatments (boiling and formaldehyde treatment). Effect of various process parameters, namely, pH, adsorbent dose, initial chromium concentration and contact time has been studied in batch systems. The removal of chromium was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. Maximum metal removal was observed at pH 2.0. The efficiencies of boiled and formaldehyde treated rice husk for Cr(VI) removal were 71.0% and 76.5% respectively for dilute solutions at 20gl(-1) adsorbent dose. The experimental data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherm models. It was found that Freundlich and D-R models fitted well. The results revealed that the hexavalent chromium is considerably adsorbed on rice husk and it could be an economical method for the removal of hexavalent chromium from aqueous systems. FTIR and SEM were recorded, before and after adsorption, to explore number and position of the functional groups available for Cr(VI) binding on to studied adsorbents and changes in adsorbent surface morphology.  相似文献   

12.
Alternanthera philoxeroides biomass, a type of freshwater macrophyte, was used for the sorptive removal of Ni(II), Zn(II) and Cr(VI) from aqueous solutions. Variables of the batch experiments include solution pH, contact time, particle size and temperature. The biosorption capacities are significantly affected by solution pH. Higher pH favors higher Ni(II), Zn(II) removal, whereas higher uptake of Cr(VI) is observed as the pH is decreased. A two-stage kinetic behavior is observed in the biosorption of Ni(II), Zn(II) and Cr(VI): very rapid initial biosorption in a few minutes, followed by a long period of a slower uptake. It is noted that an increase in temperature results in a higher Ni(II), Zn(II) and Cr(VI) loading per unit weight of the sorbent. Decreasing the particle sizes of the Alternanthera philoxeroides biomass leads to an increase in the Ni(II), Zn(II) and Cr(VI) uptake per unit weight of the sorbent. All isothermal data are fairly well fitted with Langmuir equations. The thermodynamic parameter, DeltaG degrees, were calculated. The negative DeltaG degrees values of Cr(VI), Ni(II) and Zn(II) at various temperatures confirm the adsorption processes are spontaneous.  相似文献   

13.
以凹凸棒土为载体,合成了乙二胺(EDA)改性凹凸棒土(ATP)吸附剂EDA/ATP复合材料。采用FTIR、TGA对吸附剂进行表征,同时将其应用于对水中Cr(VI)的吸附,研究了溶液初始浓度、吸附时间、溶液pH、Cl?与PO43?阴离子浓度对吸附的影响。FTIR和TGA结果表明乙二胺已成功接枝到凹凸棒土表面。吸附实验表明,25℃时EDA/ATP复合材料对Cr(VI)的最大吸附容量为153.78 mg·g?1,吸附在800~900 min内达到平衡,吸附符合Freundlich吸附等温模型和拟二级动力学模型;在初始溶液pH为2~10条件下,随着pH的增加,吸附量先增加再降低,pH为3时,吸附量最大;Cl?对吸附影响较小,PO43?对吸附的影响较大,当PO43?浓度达到20 mmol·L?1时,Cr(VI)最大吸附量下降了83 mg·g?1;实验表明EDA/ATP可作为一种潜在处理水中Cr(VI)的吸附剂。   相似文献   

14.
Removal of U(VI) ions from aqueous solutions was investigated using synthetic akaganeite-type nanocrystals. Nanocrystals of iron oxyhydroxides were synthesized with two different methods and then compared their adsorption capacities. Akaganeite (β-FeOOH) was synthesized in the laboratory by precipitation from aqueous solution of Fe(III) chloride and different precipitating agents. The relative importance of test parameters like solution pH, contact time, temperature and concentration of adsorbate on adsorption performance of akaganeite for U(VI) ion were studied. Typical adsorption isotherms (Langmuir, Freundlich, Dubinin-Raduskevich) were determined for the mechanism of sorption process. Also the thermodynamic constants (ΔH°, ΔS° and ΔG°) were calculated. The product materials were examined by powder X-ray diffraction for crystalline phase identification and scanning electron microscope (SEM).  相似文献   

15.
Published data on the stability of Pu(VI) and Pu(V) in solutions of mineral and organic acids and their salts are analyzed. The hypothesis that Pu(VI) in acid solutions disappears owing to the disproportionation to Pu(VII) and Pu(V) cannot be accepted because of high redox potential of the Pu(VII)/(VI) couple. Plutonium( VI) is reduced owing to radiation-chemical reactions induced by its α-radiation and to the formation of a dimer (so-called excimer) by an excited Pu(VI) ion with an unexcited Pu(VI) ion, which rapidly decomposes to Pu(V) and H2O2. Plutonium(V) disappears owing to disproportionation and radiation-chemical processes.  相似文献   

16.
The behavior of Pu(VI), Pu(V), and Pu(IV) in K(Li,Na)HCO2 and HCOOH + Li(Na)HCO2 solutions was studied by spectrophotometry. Changes in the spectra of a Pu(VI) solution, observed on adding alkali metal formates, suggest formation of Pu(VI) formate complexes. Changes in the absorption spectra of Pu(V), observed with an increase in the concentration of LiHCO2 or NaHCO2, suggest the appearance of Pu(V) formate complexes. The absorption spectra of Pu(IV) indicate that, in a wide range of formate concentrations, the composition of the Pu(IV) formate complexes under the examined conditions is constant. The Pu(VI) content in formate solutions decreases at a rate exceeding the rate of the Pu(VI) disappearance in 0.5–2 M HClO4 under the action of the 239Pu α-radiation. The tendency of Pu(V) to reduction and disproportionation in formate solutions depends in a complex fashion on the formate ion concentration and kind of the alkali metal. The kinetics of the Pu(V) consumption in HCOOH + Li(Na)HCO2 solutions was studied. The reaction starts with the formation of a Pu(V) formate complex, which interacts with Pu(V) aqua ions and Pu(V) formate complex to form dimers, with their subsequent protonation and transformation into Pu(VI) and Pu(IV).  相似文献   

17.
Cui H  Fu M  Yu S  Wang MK 《Journal of hazardous materials》2011,186(2-3):1625-1631
Biosorption, as an effective and low-cost technology treating industrial wastewaters containing Cr(VI), has become a significant concern worldwide. In this work, acid-modified byproducts of beer production (BBP) were used to remove Cr(VI) from aqueous solutions. Removal of Cr(VI) increases as the pH is decreased from 4.0 to 1.5, but the maximum of total Cr removal is obtained in a pH range from 2.0 to 2.5. Nearly 60% of the initial Cr(VI) (100 mg L(-1)) was adsorbed or reduced to Cr(III) within the first 10 min at pH 2.0. The Cr(VI) removal capability of acid-modified BBP materials was almost completely retained after regenerating with acid. FT-IR and XPS spectra revealed that carboxylate and carboxyl groups on the surface of modified BBP materials play a major role in Cr(VI) binding and reduction, whereas amide and other groups play a minor role in the Cr(VI) removal process.  相似文献   

18.
19.
A new cellulosic amine-crosslinked copolymer was prepared after the amination reaction with cotton stalk peel (CSP). The physicochemical characteristics of amine-crosslinked cotton stalk peel (AC-CSP) and raw CSP were determined after the surface analysis (including specific surface area, micropore volume and SEM), zeta potential analysis and spectrum analysis (FTIR and Raman spectrum). The sorption properties of AC-CSP for Cr(VI) were evaluated in the static, column sorption and desorption tests. The surface characteristics indicated the absence of porous adsorption in the potential Cr(VI) sorption mechanism. Zeta potential and spectrum analysis of AC-CSP illustrated the involvement of amine groups in the Cr(VI) sorption process. The sorption capacity of AC-CSP for Cr(VI) was 129.0mg/g as comparison with 14.8 mg/g of raw CSP. Flow rate and influent Cr(VI) concentration were demonstrated as two influencial factors in the column sorption tests. NaCl was used as the eluent, and the desorption efficiencies during three successive cycles were 75.9%, 69.8% and 64.3%, respectively. In addition, the results of the static, column sorption and desorption tests illustrated the complicated interactions between Cr(VI) and AC-CSP including complexation and ion exchange mechanisms.  相似文献   

20.
A type of ZrO2·nH2O was synthesized and its Cr(VI) removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The Cr(VI) adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model. The adsorption capacity increased from 61 to 66 mg g?1 when the temperature was increased from 298 to 338 K. The positive values of both ΔH° and ΔS° suggest an endothermic reaction and increase in randomness at the solid–liquid interface during the adsorption. ΔG° values obtained were negative indicating a spontaneous adsorption process. The effective desorption of Cr(VI) on ZrO2·nH2O could be achieved using distilled water at pH 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号