首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
基于神经网络与改进ABC算法的瓦斯预测研究   总被引:1,自引:0,他引:1  
人工蜜蜂群(ABC)优化算法具有较强的全局搜索能力。在标准算法的基础上,参考粒子群优化算法,加入当前全局最优解对算法的有益引导;当观察蜂在引导蜂所在食物源附近搜索时,引入混沌搜索机制,改善局部搜索性能。利用改进的ABC算法,以网络训练的最小方差F为优化指标,优化神经网络的连接权值。优化后的神经网络用于瓦斯预测,取得了良好的效果。  相似文献   

2.
由于标准粒子群算法易于陷入局部最优和收敛速度慢等问题,提出了一种引入人工蜂群搜索策略和混合蛙跳搜索策略的粒子群算法(ABCSFL-PSO)。使用人工蜂群的搜索策略提高算法的探索能力,避免算法陷入局部最优;使用蛙跳算法中更新最差粒子的策略,来加快算法收敛速度,并进一步提高求解精度。在12个标准测试函数上的仿真实验结果表明,算法性能优良,不仅能够避免陷入局部最优,而且显著提升了收敛速度。  相似文献   

3.
针对彩色图像多阈值分割中普遍存在精度低、速度慢的问题,提出了一种新的基于双搜索人工蜂群(DABC)的彩色图像多阈值分割算法。首先由于人工蜂群算法单一的解搜索公式存在不足,对雇佣蜂和跟随蜂各提出了一种搜索公式,进而对人工蜂群算法的相关参数进行了改进,然后做了DABC算法、全局最优引导人工蜂群算法(GABC)、人工蜂群算法(ABC)、粒子群优化算法(PSO)这四种算法的彩色图像多阈值分割对比实验。实验结果表明,与其他三种算法相比,基于DABC的彩色图像多阈值分割方法在分割的精度和速度上都有明显提高,完全能满足实际的需要。  相似文献   

4.
Artificial bee colony (ABC) algorithm is a novel biological-inspired optimization algorithm, which has many advantages compared with other optimization algorithm, such as less control parameters, great global optimization ability and easy to carry out. It has proven to be more effective than some evolutionary algorithms (EAs), particle swarm optimization (PSO) and differential evolution (DE) when testing on both benchmark functions and real issues. ABC, however, its solution search equation is poor at exploitation. For overcoming this insufficiency, two new solution search equations are proposed in this paper. They apply random solutions to take the place of the current solution as base vector in order to get more useful information. Exploitation is further improved on the basis of enhancing exploration by utilizing the information of the current best solution. In addition, the information of objective function value is introduced, which makes it possible to adjust the step-size adaptively. Owing to their respective characteristics, the new solution search equations are combined to construct an adaptive algorithm called MTABC. The methods our proposed balance the exploration and exploitation of ABC without forcing severe extra overhead in respect of function evaluations. The performance of the MTABC algorithm is extensively judged on a set of 20 basic functions and a set of 10 shifted or rotated functions, and is compared favorably with other improved ABCs and several state-of-the-art algorithms. The experimental results show that the proposed algorithm has a higher convergence speed and better search ability for almost all functions.  相似文献   

5.
为避免人工蜂群算法陷入早熟,提出一种基于动态搜索策略的人工蜂群算法,新算法改进了人工蜂群算法的搜索策略,将两种不同的搜索策略组合成新的搜索策略,以便动态利用两种不同搜索策略的优点,平衡了算法的局部搜索能力和全局搜索能力。基准函数的仿真实验表明,新算法收敛速度快、求解精度高、鲁棒性较强,适合求解高维复杂的全局优化问题。  相似文献   

6.
Artificial bee colony algorithm is one of the most recently proposed swarm intelligence based optimization algorithm. A memetic algorithm which combines Hooke–Jeeves pattern search with artificial bee colony algorithm is proposed for numerical global optimization. There are two alternative phases of the proposed algorithm: the exploration phase realized by artificial bee colony algorithm and the exploitation phase completed by pattern search. The proposed algorithm was tested on a comprehensive set of benchmark functions, encompassing a wide range of dimensionality. Results show that the new algorithm is promising in terms of convergence speed, solution accuracy and success rate. The performance of artificial bee colony algorithm is much improved by introducing a pattern search method, especially in handling functions having narrow curving valley, functions with high eccentric ellipse and some complex multimodal functions.  相似文献   

7.
改进的人工蜂群算法在函数优化问题中的应用   总被引:2,自引:0,他引:2  
人工蜂群算法是近年来新提出的一种优化算法。针对标准人工蜂群算法的局部搜索能力差,精度低的缺点,提出了一个改进的人工蜂群算法,利用全局最优解和个体极值的信息来改进人工蜂群算法中的搜索模式,并引入异步变化学习因子,保持全局搜索和局部搜索的平衡。将改进的人工蜂群算法在函数优化问题上进行测试,结果表明改进的人工蜂群算法优于原算法。  相似文献   

8.
针对光网络故障恢复资源利用的优化问题,采用改进的蜂群算法(IABC)来求解专有路径保护设计优化问题。由于采蜜机理的蜂群算法全局寻优能力较弱,引入禁忌表机制,增强算法搜索全局最优解的能力,并改进蜂群算法的交叉算子,增强算法的收敛速度。通过实验仿真。结果表明与传统的ABC算法相比,IABC能算法大大地提高计算效率,针对较复杂网络资源优化的NP问题提供有效的可行性实施方法。  相似文献   

9.
Multilevel thresholding is an important technique for image processing and pattern recognition. The maximum entropy thresholding (MET) has been widely applied in the literature. In this paper, a new multilevel MET algorithm based on the technology of the artificial bee colony (ABC) algorithm is proposed: the maximum entropy based artificial bee colony thresholding (MEABCT) method. Four different methods are compared to this proposed method: the particle swarm optimization (PSO), the hybrid cooperative-comprehensive learning based PSO algorithm (HCOCLPSO), the Fast Otsu’s method and the honey bee mating optimization (HBMO). The experimental results demonstrate that the proposed MEABCT algorithm can search for multiple thresholds which are very close to the optimal ones examined by the exhaustive search method. Compared to the other four thresholding methods, the segmentation results of using the MEABCT algorithm is the most, however, the computation time by using the MEABCT algorithm is shorter than that of the other four methods.  相似文献   

10.
In recent years, heuristic algorithms have been successfully applied to solve clustering and classification problems. In this paper, gravitational search algorithm (GSA) which is one of the newest swarm based heuristic algorithms is used to provide a prototype classifier to face the classification of instances in multi-class data sets. The proposed method employs GSA as a global searcher to find the best positions of the representatives (prototypes). The proposed GSA-based classifier is used for data classification of some of the well-known benchmark sets. Its performance is compared with the artificial bee colony (ABC), the particle swarm optimization (PSO), and nine other classifiers from the literature. The experimental results of twelve data sets from UCI machine learning repository confirm that the GSA can successfully be applied as a classifier to classification problems.  相似文献   

11.
针对基本人工蜂群算法容易陷入局部最优和早熟等问题,提出一种改进的人工蜂群算法(ASABC)。利用平均熵机制初始化种群,增加种群的多样性,避免算法陷入早熟;同时,采用自适应调节邻域搜索步长的策略来提高算法的局部搜索能力,提升算法的计算精度;为了平衡算法的全局搜索能力和局部搜索能力,引入自适应比例选择策略来代替人工蜂群算法的适应度比例选择方法。对8个标准测试函数的仿真实验结果表明,与3种常见的智能优化方法相比,改进的算法具有显著的局部搜索能力和较快的收敛速度。  相似文献   

12.
一种双种群差分蜂群算法   总被引:10,自引:0,他引:10  
人工蜂群算法(ABC)是一种基于蜜蜂群智能搜索行为的随机优化算法.为了有效改善人工蜂群算法的性能,结合差分进化算法,提出一种新的双种群差分蜂群算法(BDABC).该算法首先通过基于反向学习的策略初始化种群,使得初始化的个体尽可能均匀分布在搜索空间,然后将种群中的个体随机分成两组,每组采用不同的优化策略同时进行寻优,并通过在两群体之间引入交互学习的思想,来提高算法的收敛速度.基于6个标准测试函数的仿真实验表明,BDABC算法能有效避免早熟收敛,全局优化能力和收敛速率都有显著提高.  相似文献   

13.
人工蜂群(Artificial bee colony, ABC)算法是一种新型的仿生智能优化算法。与其他仿生智能优化算法相比,ABC算法的优化求解策略仍有待改进,以进一步提高其收敛速度和优化求解精度。为此,本文提出一种简单而高效的改进ABC算法,将统计学中的正态分布理论引入ABC算法的优化求解过程。首先,提出基于正态分布的蜜源初始化策略,提高了初始化过程的目的性,为后续搜索提供了精度保障。进而对搜索公式中的基础位置和缩放因子进行改进,提出了基于正态分布的搜索策略。该策略在扩大搜索范围的同时,使搜索更新过程更具目的性,从而在有效防止陷入局部收敛的同时,提高了优化求解速度。针对高维复杂Benchmark函数的测试实验结果表明,所提出算法的改进策略简单有效,其收敛速度和求解精度更高。  相似文献   

14.
Gravitational search algorithm (GSA) has been shown to yield good performance for solving various optimization problems. However, it tends to suffer from premature convergence and loses the abilities of exploration and exploitation when solving complex problems. This paper presents an improved gravitational search algorithm (IGSA) that first employs chaotic perturbation operator and then considers memory strategy to overcome the aforementioned problems. The chaotic operator can enhance its global convergence to escape from local optima, and the memory strategy provides a faster convergence and shares individual's best fitness history to improve the exploitation ability. After that, convergence analysis of the proposed IGSA is presented based on discrete-time linear system theory and results show that IGSA is not only guaranteed to converge under the conditions, but can converge to the global optima with the probability 1. Finally, choice of reasonable parameters for IGSA is discussed on four typical benchmark test functions based on sensitivity analysis. Moreover, IGSA is tested against a suite of benchmark functions with excellent results and is compared to GA, PSO, HS, WDO, CFO, APO and other well-known GSA variants presented in the literatures. The results obtained show that IGSA converges faster than GSA and other heuristic algorithms investigated in this paper with higher global optimization performance.  相似文献   

15.
针对约束优化问题,提出一种自适应人工蜂群算法。算法采用反学习初始化方法使初始种群均匀分布于搜索空间。为了平衡搜索过程中可行个体和不可行个体的数量,算法使用自适应选择策略。在跟随蜂阶段,采用最优引导搜索方程来增强算法的开采能力。通过对13个标准测试问题进行实验并与其他算法比较,发现自适应人工蜂群算法具有较强的寻优能力和较好的稳定性。  相似文献   

16.
The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.  相似文献   

17.
引力搜索算法是最近提出的一种较有竞争力的群智能优化技术,然而,标准引力算法存在的收敛速度慢、容易在进化过程中陷入停滞状态.针对上述问题,提出一种改进的引力搜索算法.该算法采用混沌反学习策略初始化种群,以便获得遍历整个解空间的初始种群,进而提高算法的收敛速度和解的精度.此外,该算法利用人工蜂群搜索策略很强的探索能力,对种群进行引导以帮助算法快速跳出局部最优点.通过对13个非线性基准函数进行仿真实验,验证了改进的引力搜索算法的有效性和优越性.  相似文献   

18.
针对数值函数优化问题,提出一种改进的人工蜂群算法.受文化算法双层进化空间的启发,利用信度空间中的规范知识引导搜索区域,自适应调整算法的搜索范围,提高算法的收敛速度和勘探能力.为保持种群多样性,设计一种种群分散策略,平衡群体的全局探索和局部开采能力,并且在各个进化阶段采用不同的方式探索新的位置.通过对多种标准测试函数进行实验并与多个近期提出的人工蜂群算法比较,结果表明该算法在收敛速度和求解质量上均取得较好的改进效果.  相似文献   

19.
On the performance of artificial bee colony (ABC) algorithm   总被引:1,自引:0,他引:1  
《Applied Soft Computing》2008,8(1):687-697
Artificial bee colony (ABC) algorithm is an optimization algorithm based on a particular intelligent behaviour of honeybee swarms. This work compares the performance of ABC algorithm with that of differential evolution (DE), particle swarm optimization (PSO) and evolutionary algorithm (EA) for multi-dimensional numeric problems. The simulation results show that the performance of ABC algorithm is comparable to those of the mentioned algorithms and can be efficiently employed to solve engineering problems with high dimensionality.  相似文献   

20.
Artificial bee colony algorithm (ABC), which is inspired by the foraging behavior of honey bee swarm, is a biological-inspired optimization. It shows more effective than genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). However, ABC is good at exploration but poor at exploitation, and its convergence speed is also an issue in some cases. For these insufficiencies, we propose an improved ABC algorithm called I-ABC. In I-ABC, the best-so-far solution, inertia weight and acceleration coefficients are introduced to modify the search process. Inertia weight and acceleration coefficients are defined as functions of the fitness. In addition, to further balance search processes, the modification forms of the employed bees and the onlooker ones are different in the second acceleration coefficient. Experiments show that, for most functions, the I-ABC has a faster convergence speed and better performances than each of ABC and the gbest-guided ABC (GABC). But I-ABC could not still substantially achieve the best solution for all optimization problems. In a few cases, it could not find better results than ABC or GABC. In order to inherit the bright sides of ABC, GABC and I-ABC, a high-efficiency hybrid ABC algorithm, which is called PS-ABC, is proposed. PS-ABC owns the abilities of prediction and selection. Results show that PS-ABC has a faster convergence speed like I-ABC and better search ability than other relevant methods for almost all functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号