首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对三维多向编织复合材料结构件承载细观结构优化设计的问题,以三维编织复合材料T型梁为对象,对其抗弯性能进行模拟分析。基于细观结构单胞模型,采用刚度体积平均法计算具有不同编织角的三维四向、五向和六向编织复合材料的弹性常数;利用有限元软件Patran/Nastran计算T型梁承受弯曲载荷的应力与应变,分析纤维束交织结构和细观结构参数对T型梁抗弯性能的影响。结果表明,纤维体积含量一定时,三维六向较三维四向、五向编织复合材料的弹性性能更接近各向同性,同时选择比较大的编织角,可提高T型梁抗弯的承载能力。此方法可为异型三维编织复合材料构件细观结构的选型与参数设计可供参考。  相似文献   

2.
文章分别用实验和有限元模拟方法研究了碳纤维三维四向编织复合材料T型梁的模态性能,分析了悬臂梁自由端长度的变化对其固有频率的影响以及固有频率与阻尼性能的关系,并对比了实验和有限元模拟固有频率。结果表明:三维四向编织复合材料T型梁的固有频率随着其自由端长度的增加而降低;其固有频率和其阻尼性能没有明显的相关关系;模拟结果与实验结果相一致。  相似文献   

3.
以1 200 tex的E型玻璃纤维为原料,采用3DB-J100-8型模块化组合三维编织平台制备三维四向、三维五向管状编织物;以E51环氧树脂、H023聚醚胺组成树脂基体,与上述编织物复合制成三维管状编织复合材料;利用Instron 3385H型万能材料试验机测试并观察材料的弯曲性能,研究编织结构、编织角等结构参数对三维管状编织复合材料弯曲性能的影响规律。结果表明:三维管状编织复合材料破坏特性均表现为明显的脆性破坏;三维五向管状编织复合材料的抗弯性能明显好于三维四向管状编织复合材料;三维管状编织复合材料的弯曲性能均随编织角的增大而增加。  相似文献   

4.
总结三维编织复合材料弯曲性能测试的主要方法,从理论预测与试验研究两方面介绍三维编织复合材料弯曲性能的研究成果,比较不同预测方法的优缺点,探讨当前工作存在的问题,并对今后的研究趋势进行了展望。  相似文献   

5.
根据矩形组合截面三维编织复合材料四步法编织原理,分析了T形截面编织物的纱线运动规律,按照载纱器的水平运动规律确定了纱线的空间运动轨迹,并用控制体积法建立T形截面交接区域的特殊细观结构模型。在假设纱线截面为椭圆形等理想状态下,建立了编织工艺参数之间的数学关系。运用弯曲刚度合成法预测了T形截面三维编织复合材料的弯曲性能,用MatLab编写了弯曲模量的计算程序。结果表明:弯曲模量随编织角的增大而减小,随纤维体积含量的增加而增大,三维五向T形截面梁的弯曲性能优于三维四向的。最后将预测结果与实验结果进行比较分析,结果证实用弯曲刚度合成法预测T形截面三维编织复合材料的弯曲性能是可靠的。  相似文献   

6.
丁辛 《纺织学报》1997,18(6):13-15
三维立体编织是复合材料增强结构成型的一项十分有效的方法。本文介绍了一种新的编织技术,即利用角轮和拨叉装置控制载纱锭,使其在平面内以设定的路径和方式运动,达到立体编织的目的。由该技术编织工字形截面的纺织结构预制件,经树脂的注入和固化,使之成为梁状复合材料试样。弯曲测试结果表明:工字梁的断裂失效部位为压缩面;纤维体积含量和纤维取向角对梁的弯曲强度和弯曲模量有着不同的影响.  相似文献   

7.
为探究不同梁高的T 字型三维整体机织复合材料的弯曲力学性质,经合理设计,使用玄武岩长丝束在普通小样织机上,低成本织造3 种不同梁高的T 字型三维整体机织物,采用真空辅助树脂传递模塑成型工艺,制备T 字型三维整体机织复合材料。用电子万能试验机测试,得到相应的载荷位移曲线和吸收能量位移曲线。由实验结果可知,梁越高的T 型三维整体机织复合材料所承受的载荷和吸收的能量也越高,且不同梁高的T 型三维整体机织复合材料也表现出不同的弯曲破坏模式。该研究结果表明,梁高对T 字型三维整体机织复合材料的弯曲载荷、吸能和破坏模式影响显著。  相似文献   

8.
三维编织复合材料拉伸与弯曲声发射特征分析   总被引:3,自引:0,他引:3       下载免费PDF全文
万振凯 《纺织学报》2007,28(4):52-55
论述了声发射技术在三维编织复合材料拉伸和弯曲过程中的应用以及试验方法,描述了三维编织复合材料拉伸与弯曲过程中声发射的特征。拉伸试验结果表明:编织角小的试件,其应力应变曲线基本为直线,损伤为脆性特征;编织角大的试件,应力应变曲线表现出双线性,各自呈现出脆性破坏特征。弯曲试验表明:小编织角复合材料的载荷挠度曲线保持线性关系;大编织角复合材料的载荷挠度曲线是非线性关系。  相似文献   

9.
碳/芳纶混编三维编织复合材料拉伸性能   总被引:1,自引:0,他引:1  
为分析三维编织复合材料拉伸性能和失效机制,分别以碳纤维和芳纶纤维为轴纱和编织纱织造了三维五向、三维六向碳/芳纶混编复合材料。采用数字图像相关法采集试样在单轴拉伸过程中表面全场应变信息得到的泊松比。结果表明:三维编织复合材料泊松比受编织结构的影响较大,同种编织结构下,碳纤维为轴纱的复合材料基本保持了碳纤维三维编织复合材料的拉伸强度和模量,同时提高了断裂伸长率;芳纶纤维为轴纱的复合材料则显著提高了断裂伸长率,但拉伸强度和模量损失较为明显;同种混编方式下,三维五向编织复合材料的拉伸强度和拉伸模量较三维六向高,断裂伸长率无明显差异。编织纱分别为碳纤维和芳纶纤维的三维编织复合材料高应变区分别类似点阵分布和波浪线分布,三维五向和三维六向编织复合材料高应变区分别呈均匀分散分布和横向分布。  相似文献   

10.
以无碱玻璃纤维为原料,采用四步法1×1编织工艺在全自动模块组合式编织平台上制备三维五向及全五向编织物;以E51环氧树脂、70#固化剂(四氢邻苯二甲酸酐)为树脂基体,与编织物复合制备三维五向及全五向编织复合材料;并利用Instron万能材料试验机对比测试上述编织复合材料的压缩性能,研究轴纱、编织角、纤维体积分数等结构参数对材料压缩性能的影响。结果表明,编织复合材料的压缩性能随着编织角的增大而降低,随着轴纱、纤维体积分数的增大而提高;三维全五向编织复合材料的压缩性能明显好于三维五向编织复合材料。  相似文献   

11.
为实现三维编织复合材料实时承载监测,基于碳纳米线嵌入三维编织复合材料预制件的方法,分析了嵌入碳纳米线的三维编织复合材料制件,在不同载荷下三点弯曲的碳纳米线应变传感特性,重点分析了制件拉伸和压缩承载下碳纳米线电阻的变化。实验表明:在三点弯曲过程中,制件加载至断裂应变和碳纳米线电阻变化具有单调一致性, 碳纳米线电阻变化符合一定指数函数关系;在大负荷加载后碳纳米线产生电阻滞后现象;制件卸载后,碳纳米线传感器产生残余电阻。研究证明:碳纳米线传感器在弯曲负载下能够实时感知并监测三维编织复合材料结构健康状况,为三维编织复合材料结构健康监测系统的构建提供了参考。  相似文献   

12.
为解决陶瓷基复合材料在服役过程中因拉伸和弯曲导致的失效问题,以三维六向编织SiCf/SiC复合材料为研究对象,分析了受力过程中复合材料力学行为与纤维及结构的联系机制。采用微计算机断层扫描技术获得材料结构及孔隙的三维图像,对复合材料纵向和横向进行拉伸、弯曲性能测试,并阐明其损伤机制。结果表明:复合材料呈现明显的各向异性特性,纵向拉伸强度和弯曲强度分别是横向的10.37、5.06倍;复合材料不同方向受力的损伤模式不同,拉伸载荷下纵向试样裂纹沿着六向纱呈Z字形扩展,而横向试样裂纹沿着编织轴向扩展,最终导致拉伸破坏;弯曲载荷下裂纹沿着厚度方向扩展,并最终导致纵向及横向试样的韧性断裂,且纵向韧性优于横向。  相似文献   

13.
为研究编织层数对编织复合材料圆管的扭转力学性能和失效模式的影响,采用二维编织铺层(Over-Braiding)工艺及真空辅助树脂灌注成型工艺分别制备了2、3和4层的碳纤维/树脂编织复合材料圆管.通过搭建扭转试验-非接触全场应变测试平台,研究了3种编织层数的复合材料圆管的扭转力学响应.基于扫描电子显微镜与微计算机断层扫描...  相似文献   

14.
以嵌入三维编织复合材料的碳纳米线作为拉伸传感器构建智能复合材料,利用主成分分析(PCA)以及T²和Q统计方法,对三维编织智能复合材料结构损伤进行研究。采用主成分方法对三维编织智能复合材料制件的损伤信息进行处理,以无损伤试件作为基准值建立PCA 模型,提出了智能复合材料损伤估计步骤。结果表明:用损伤指数(T² 和Q)与基准值的偏差可描述试件结构损伤程度,有损试件的损伤指数远远大于无损试件的基准值,T² 损伤指数值可以很好地反映试件较大的损伤,Q 损伤指数值较详细地反映了试件的损伤细节;本文方法的计算结果与实际损伤具有很好的吻合性。  相似文献   

15.
三维编织复合材料压缩损伤声发射特性分析   总被引:2,自引:2,他引:2  
论述了声发射技术在三维编织复合材料压缩过程中的应用及实验方法,给出了声发射在三维编织复合材料中压缩过程的特征。结果表明,声发射参数可描述复合材料在不同情况下内部变形的损伤机制。表面编织角是影响三维编织复合材料力学性能的主要参数,编织角小于30°,三维编织复合材料具有较好的压缩性能;编织角大于40°,三维编织复合材料压缩力学性能明显降低。为分析复合材料的力学性能,改善材料复合工艺提供理论基础。  相似文献   

16.
This paper reports numerical analyses of thermo-mechanical behaviors of three-dimensional (3-D) 4-step rectangular braided basalt fiber/epoxy resin composite materials under different temperatures from 60 to 210°C. In the braided composite, the basalt fiber tows were assumed as thermal insensitive material and the mechanical behaviors of the epoxy resin under different temperatures were tested and introduced in microstructure model of the 3-D braided composite. The thermal stress distributions in fiber tows and resins were numerical calculated based on the microstructure model. The influences of fiber tow orientations and braided architectures on the stress distribution along the axial direction and resins have been discussed to characterize the thermal stress under different temperatures. The residual stress in the braided composite induced from the temperature change is also analyzed for the application of the braided composite to different temperature environments. It is expected that such a numerical investigation could be extended to the design of 3-D braided composite applied to high temperatures.  相似文献   

17.
The static three-point bending properties and cyclic bending fatigue performances of three-dimensional five-directional braided T-beam composite (3D5DBTC) have been investigated at room temperature. The fatigue life of 3D5DBTC under different stress levels was analyzed based on the obtained S–N curves. The load–displacement hysteresis loops curves and stiffness degradation curves were recorded to reveal the relationship between stiffness degradation and damage evolution. It is shown that there were three distinct stages corresponding respectively to matrix cracks, interface debonding, and fiber breaking in the whole fatigue loading. In addition, to understand the ultimate fracture failure mechanism of 3D5DBTC under the different fatigue loading conditions, the damage morphologies of 3D5DBTC after fatigue testing were observed by macrographs and SEM micrographs. The matrix crack and the resin–yarns interface debonding occurred on the flange while fiber breakages occurred in the web. Meanwhile, macrographs and SEM images confirm that fiber breaking is the dominant damage under the high stress level, while matrix cracking and interfacial debonding are the main failure modes at low stress level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号