首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
罗俊  王芳辉  孔令汉  张瑶  朱红 《功能材料》2015,(7):7100-7102,7108
为了研究Fe3O4形貌与其复合材料电磁吸收性能之间的关系,采用水热法制备了微粒和棒状两种形貌的Fe3O4与石墨烯复合材料。利用X射线衍射(XRD)仪、透射电子显微镜(TEM)和矢量网络分析仪(VNA)对复合材料的结构、形貌以及电磁吸收性能进行了表征。结果表明,纳米Fe3O4棒/石墨烯复合材料相比纳米Fe3O4粒子/石墨烯具有更优异的电磁吸收性能,其在8~18GHz范围内小于-10dB频带宽9.8~17.9GHz,说明材料的微波吸收性能和纳米粒子的形貌有关。  相似文献   

2.
以氧化石墨和二茂铁为原料,采用溶剂热法原位一步合成了Fe3O4/还原氧化石墨烯(Fe3O4/RGO)复合物,通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)、循环伏安测试等手段对复合材料的形貌、结构、磁性能和电化学性能进行了表征。结果表明,该方法具有简单、可控的优点,通过调变前驱物中氧化石墨和二茂铁的比例,可以控制复合物中Fe3O4纳米粒子的负载量。所制备Fe3O4/RGO复合材料由平均粒径约20nm的Fe3O4纳米颗粒高度分散在还原氧化石墨烯片层上组成,具有较好的超顺磁性,电化学稳定性和良好的倍率性能。  相似文献   

3.
采用原位化学沉淀法将Fe3O4与石墨复合,研究了不同复合比例对吸波性能的影响。结果表明:随着Fe3O4负载量的增加,复合材料中Fe3O4的X射线衍射峰增强;Fe3O4主要沉积在石墨表面,随着Fe3O4负载量的增加,对石墨表面的包覆越完整,但也有一些Fe3O4纳米颗粒散落在石墨颗粒之间;复合材料的介电常数随Fe3O4负载量的增大而减小,磁导率变化较小;在Fe3O4与石墨不同质量比复合材料中,质量比为5∶1和4∶1的复合材料表现出较好的吸波效果,在厚度为1.5mm时,质量比为5∶1样品吸收峰值达-31.9dB,大于-10dB的吸收频带宽为5.0GHz。  相似文献   

4.
通过表面柔性氧化技术在羰基铁粉(CIPs)表面改性制备了CIPs/Fe_3O_4材料。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱分析(XPS)和矢量网络分析仪对改性前后的CIPs进行测试分析,研究了不同处理时间对CIPs/Fe_3O_4材料微观形貌、物相、元素组成和价态、电磁性能及吸波性能的影响。结果表明:随着表面氧化处理时间的延长,CIPs表面生成的Fe_3O_4颗粒越来越多。模拟反射率结果表明:当反应时间为90 min、材料厚度为1.8 mm时,CIPs/Fe_3O_4材料在测试频段内的吸收值低于-20 dB的频宽为1.7 GHz,最低吸收峰值为-29.6 dB;而原始CIPs材料在测试频段内的吸收值低于-20 dB的频宽为1.5 GHz,最低吸收峰值为-24.1 dB。这说明通过对CIPs的表面进行氧化改性处理,可以提高其吸收效率和吸收频宽。  相似文献   

5.
采用还原法在三元乙丙橡胶(EPDM)泡沫结构中原位生长还原氧化石墨烯(RGO)气凝胶材料,制备了RGO/EPDM泡沫双三维复合结构。研究了氧化石墨烯先驱体(GOs)溶液浓度对泡沫复合材料微观结构及电磁性能的影响规律。结果表明:不同先驱体浓度下,RGO均以三维泡沫结构形态附着在EPDM泡沫骨架结构内部,分散均匀且具有较好的附着力;成分分析显示材料复合后界面未发生化学反应,各部分材料仍保持其本征特性;微波反射率测试结果显示,在8~18GHz范围内,不同浓度的样品单体均未表现出明显的强电磁吸收能力,但3块样品梯度叠加后(厚度达7mm)吸波性能出现大幅提升,最大吸波强度达到-22.27dB,-10dB吸收频段为9.9~18GHz,频宽达到8.05GHz,显示出良好的宽频吸波性能。  相似文献   

6.
成功合成了一种新型的氧化石墨烯/Fe_2O_3纳米管复合材料,并利用透射电镜(TEM)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)对材料的形貌、结构及化学成分进行了表征。结果表明,Fe_2O_3纳米管较为均匀地分布在片状氧化石墨烯表面,材料具有稳定的晶型结构;Fe_2O_3纳米管能够与氧化石墨烯表面基团发生化学键作用,具有良好的界面相容性。  相似文献   

7.
利用可溶性淀粉或壳聚糖作为碳源前驱体,以溶剂热法制备的磁性Fe_3O_4纳米颗粒在喷雾干燥原位包覆过程中镶嵌于不同的碳源前驱体中,制得Fe_3O_4@X复合材料(X为可溶性淀粉或壳聚糖)。不同的前驱体复合材料在氮气气氛保护下经不同的高温煅烧,得到不同的介孔Fe_3O_4@碳磁性复合材料。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)、超导量子干涉器磁强计(SQUID)、比表面积及孔径分布测定仪(BET)等手段对不同样品的形貌、结构、组分、磁性、比表面积和孔径分布进行了表征。结果表明,在煅烧温度为800℃条件下,以壳聚糖为碳源前躯体制备的Fe_3O_4@碳复合材料具有较好的比表面积、孔体积和孔径尺寸,并且这种复合材料对亚甲基蓝染料具有一定的吸附性能,在外磁场的作用下能进行有效的固液分离。  相似文献   

8.
Li2O-Al2O3-SiO2(LAS)系统微晶玻璃是微晶玻璃中的一个重要分支。这种微晶玻璃的主要性能是低膨胀,耐热冲击性,其应用非常广泛。从原料角度总结了制备锂铝硅微晶玻璃的溶胶-凝胶方法,并对各种方法的特点进行了简要的评述,提出了研究中存在的问题及其今后的发展方向。  相似文献   

9.
采用水合肼(HH)为还原剂制备还原氧化石墨烯(rGO),以rGO作为增强填料,丁基胶乳为基体,通过改进的超声胶乳混合和原位还原工艺,制备了力学性能优异的丁基橡胶(IIR)/rGO复合材料。结果表明,在IIR基体中添加较低含量rGO时,rGO显示完全剥离和均匀分散的状态;rGO由于具有较高的比表面积,可以提高其与IIR基体之间的界面相互作用,使得IIR/rGO复合材料的拉伸强度和断裂伸长率共同增大;对比纯IIR,IIR/rGO复合材料的储能模量增加、损耗因子减小,具有更好的阻尼性能和热稳定性。  相似文献   

10.
锂铝硅微晶玻璃结构与性能热稳定性研究   总被引:3,自引:0,他引:3  
以TiO2、ZrO2为形核剂制备了透明低膨胀锂铝硅系微晶玻璃, 通过测定其等温转变动力学曲线,讨论锂铝硅玻璃析晶及相变与热处理温度和时间的关系, 并采用DTA、XRD和SEM等方法研究锂铝硅微晶玻璃结构和性能的热稳定性. 结果表明, 以β-石英固溶体为主晶相的透明微晶玻璃能在750~900℃较宽的温度范围和较长的时间内保持主晶相和结构的稳定, 850℃保温5h仍具有较高的透光率和极低的热膨胀系数, 性能具有很好的高温稳定性. 材料结构和性能的稳定性均源自钛锆复合形核剂较高的形核效率.  相似文献   

11.
以自然界富产煤炭为原料,通过高温处理、化学氧化及等离子体技术制备了煤基石墨烯,并进一步通过水热合成法将Fe2O3负载在所制石墨烯表面,成功制备了不同质量比的Fe2O3/石墨烯纳米复合材料。采用SEM、TEM等技术手段,研究了Fe2O3/石墨烯纳米复合材料的结构特征;采用电化学工作站和锂电池系统,研究了Fe2O3/石墨烯纳米复合材料的电化学特征。实验结果表明:质量比为50%的Fe2O3/石墨烯纳米复合材料的各项电化学性能最佳。  相似文献   

12.
金丹  祁远东  郭宇鹏  丁冬海 《材料导报》2016,30(20):26-29, 33
为获得吸波性能良好的吸波材料,将电阻型吸波剂碳纤维和磁损耗型吸波剂FeSiAl片状磁粉复合,以石蜡为基体,利用模压法制备出复合材料。采用激光粒度分析仪、扫描电子显微镜(SEM)、X射线衍射仪(XRD)对单一吸波剂进行了测试分析。结果发现,片状FeSiAl磁粉的粒度在数十到几百微米之间;碳纤维表面留有活性物质,截面处能看到皮芯结构;XRD衍射图谱中,FeSiAl呈现出bcc结构。对复合吸波材料的电磁参数进行测量对比,结果表明,FeSiAl片状磁粉在1~3GHz内的最佳反射率达到-40.7dB,有效吸收频带宽度约为0.5GHz;当加入长度等于4mm,含量为0.4%(质量分数)的碳纤维时,碳纤维/铁硅铝复合材料吸波性能最佳,其反射率为-49.6dB,有效吸收频带宽度为1.0GHz;FeSiAl片状磁粉平行于吸波片表面排列时,材料的反射率减小,吸波性能增强。  相似文献   

13.
用共沉淀和高温退火相结合的方法制备了晶态FeCo/石墨烯吸波粒子,使用XRD、FESEM和TEM等手段对其晶体结构和微观形貌进行了表征。结果表明,向石蜡中添加不同质量的FeCo/石墨烯吸波粒子可制备不同含量吸波粒子的复合材料。使用微波矢量网络分析仪对不同含量吸波粒子的复合材料的电磁参数的测试和不同厚度吸波性能的模拟结果表明,吸波粒子含量为50%的材料,其吸波性能最优;厚度仅为1.6 mm的材料,有效吸收带宽为5.0 GHz(12.3~17.3 GHz)。吸波粒子优异的吸波性能,源于介电损耗和磁损耗的协同作用以及合适的阻抗匹配率和衰减常数。  相似文献   

14.
本文以葡萄糖作为碳源,采用溶剂热法进行原位碳包覆合成了Fe_2O_3/ZnFe_2O_4/C材料,研究了材料的结构及电化学性能。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安扫描(CV)和恒流充放电技术对材料结构及电化学性能进行了表征。结果表明,采用此法合成的Fe_2O_3/ZnFe_2O_4/C复合材料呈现多孔结构,粒径约为250nm,经历40次循环后材料的可逆容量依然能保持在645.7mAh/g,较未包覆碳材料的电极提高了19.0%,其可逆容量和循环稳定性能得到了显著提升。  相似文献   

15.
采用酞菁铁(FePc)粉体和石墨烯(G)共研磨热压法制备了G/FePc复合材料,研究了G对FePc耐热性能和吸波性能的影响。采用SEM和XPS表征了G/FePc复合材料的表面形貌和G与FePc之间的相互作用,结果发现,FePc均匀地吸附于G片层表面,且固化后形成了层状结构,从而改善了G/FePc复合材料的耐热性能和吸波性能。进一步通过TGA和矢量网络分析方法研究了不同G添加量对G/FePc复合材料的耐热性能和电磁性能的影响,并对G/FePc复合材料不同厚度的吸波性能进行了模拟分析。结果表明,G/FePc复合材料的耐热性能和吸波性能均随着G含量的增加而提高,当G添加量为5%(质量比)时,G/FePc复合材料在1 000℃热解残留率达到62.2%,在3.5 mm厚度下最大反射损耗达到-30.50 dB,反射损耗小于-10 dB的带宽为1.38 GHz,具有优良的耐热性能和吸波性能。   相似文献   

16.
水热法一步合成ZnS/还原氧化石墨烯(ZnS/RGO)复合材料,通过XRD、FTIR、Raman、SEM分析溶剂(乙醇、水)对ZnS/RGO复合材料形貌和结构的影响。结果表明,以乙醇为溶剂制备的ZnS颗粒尺寸小、均匀分散在石墨烯片层上,在形成ZnS纳米颗粒的同时将氧化石墨烯(GO)还原成石墨烯。对亚甲基蓝(MB)的光催化结果显示,ZnS/RGO复合材料具有优异的光催化性能,其光催化速率是纯ZnS颗粒的3.7倍,石墨烯作为优良光生电子的传输通道和收集体能够降低光生电子-空穴对的重新结合率,极大提高了ZnS/RGO复合材料的光催化性能。   相似文献   

17.
在当今能源紧缺的情况下,超级电容器由于具有功率密度高、充放电时间短、循环寿命长等优点而被广泛应用于工业自动化控制、电力、国防以及新能源汽车等众多领域。本文以十八胺修饰的四氧化三铁纳米粒子(Fe_3O_4-ODA),氧化石墨烯(GO)以及苯胺单体为原料,通过原位聚合成功制备了Fe_3O_4-ODA/GO/PANI三元复合电极材料,其比电容高达516F/g,远高于二元复合材料GO/PANI和Fe_3O_4-ODA/PANI的比电容(分别为224F/g和345F/g)。并且,在1000次循环充放电之后,其容量仍可维持86.5%。此外,利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射(XRD)和傅立叶变换红外光谱仪(FT-IR)等手段对该复合材料的形貌和结构进行了表征。  相似文献   

18.
采用化学共沉淀法制备Fe3O4磁流体,再与斜发沸石复合制备一系列不同Fe3O4载量的磁性斜发沸石,并进行X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、振动样品磁强计(VSM)等表征分析,测定了其磁分离回收率及Cu2+、Zn2+、Cd2+的饱和交换吸附量.结果表明,Fe3O4微粒赋存于斜发沸石表面或相互聚集,磁性斜发沸石磁稳定性好,并具有良好的超顺磁性,其对Cu2+、Zn2+、Cd2+的交换吸附性能与其所含斜发沸石相当,但随Fe3O4载量增加而降低.Fe3O4载量为25wt%时,其饱和磁化强度Ms、剩余磁化强度Mr分别为14.787和0.398A·m2/kg,磁分离回收率为94.6%,Cu2+、Zn2+、Cd2+的饱和交换吸附量分别为12.3、12.0和23.4mg/g.磁性斜发沸石经磁分离回收并放置于空气中100d后仍保持良好的超顺磁性和较高的磁分离回收率.  相似文献   

19.
杜真真  于帆  王珺  王晶  李炯利  王旭东 《功能材料》2022,(12):12215-12223
对于高能量密度锂金属电池体系,安全、稳定的锂负极材料是关键。采用微波还原、热还原和机械剥离方法制备了3种具有不同形貌结构的石墨烯,并通过压制和叠层工艺,制备出石墨烯/锂金属复合材料。通过扫描电子显微镜(SEM)、拉曼(Raman)、X射线光电子能谱(XPS)和N2吸脱附曲线分析了不同石墨烯材料的形貌、组成、结构以及石墨烯/锂金属复合材料的形貌。同时采用Li||Li对称电池和LiFeO4全电池,评价了石墨烯/锂金属复合材料作为负极的电化学性能。结果表明,石墨烯/锂金属复合材料具有层状结构,在微波还原石墨烯(MRGO)、热还原石墨烯(RGO)和机械剥离石墨烯(EG)中,MRGO最适用于改性金属锂,叠层3次得到的4MRGO/3Li复合材料具有最优的电化学性能。基于4MRGO/3Li的Li||Li对称电池在9.9 mV左右的极化电压下稳定循环1200圈,相对于纯锂金属,极化电压降低10.6 mV,安全性和稳定性大大提升。以4MRGO/3Li复合材料为负极的LiFeO4全电池稳定循环800圈后,放电容量保持为156 mAh/g。  相似文献   

20.
张浩  朱永昌  崔竹  韩勖  耿安东 《材料导报》2018,32(Z2):80-84
自Li2O-Al2O3-SiO2系光敏微晶玻璃诞生以来,人们便期望将其优秀的异向刻蚀能力应用于微型结构件的制造中。目前,对锂铝硅系光敏微晶玻璃材料的研究主要集中在成核机理、析晶过程和组分、性质间的关系等方面。光敏微晶玻璃的光敏性和结晶性能密不可分,光敏性决定了晶核的形成,而生成的偏硅酸锂晶体则决定了其异向刻蚀能力。因而对成核机理和析晶过程的研究至关重要,亦有利于了解玻璃的本质。而随着科学技术的发展进步,光敏微晶玻璃的某些性能已不能很好地满足应用要求,如介电损耗和化学稳定性,因此提高光敏微晶玻璃的性能变得必要。随着研究的日益深入,光敏微晶玻璃在实际应用中也暴露出一些问题,如刻蚀精度、壁角倾斜度、内壁光滑度、介电损耗高等,这些问题制约着该材料的发展,亟待解决。 本文阐述了锂铝硅系光敏微晶玻璃的光敏化诱导析晶原理,详细介绍了Li2O-Al2O3-SiO2系光敏微晶玻璃的研究进展以及在三维集成电路、微流控芯片和微通道板等方面的应用,分析了现阶段存在的问题,并指出了今后光敏微晶玻璃的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号