首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In multi-label classification problems, every instance is associated with multiple labels at the same time. Binary classification, multi-class classification and ordinal regression problems can be seen as unique cases of multi-label classification where each instance is assigned only one label. Text classification is the main application area of multi-label classification techniques. However, relevant works are found in areas like bioinformatics, medical diagnosis, scene classification and music categorization. There are two approaches to do multi-label classification: The first is an algorithm-independent approach or problem transformation in which multi-label problem is dealt by transforming the original problem into a set of single-label problems, and the second approach is algorithm adaptation, where specific algorithms have been proposed to solve multi-label classification problem. Through our work, we not only investigate various research works that have been conducted under algorithm adaptation for multi-label classification but also perform comparative study of two proposed algorithms. The first proposed algorithm is named as fuzzy PSO-based ML-RBF, which is the hybridization of fuzzy PSO and ML-RBF. The second proposed algorithm is named as FSVD-MLRBF that hybridizes fuzzy c-means clustering along with singular value decomposition. Both the proposed algorithms are applied to real-world datasets, i.e., yeast and scene dataset. The experimental results show that both the proposed algorithms meet or beat ML-RBF and ML-KNN when applied on the test datasets.

  相似文献   

2.
Many real‐world problems require multilabel classification, in which each training instance is associated with a set of labels. There are many existing learning algorithms for multilabel classification; however, these algorithms assume implicit negativity, where missing labels in the training data are automatically assumed to be negative. Additionally, many of the existing algorithms do not handle incremental learning in which new labels could be encountered later in the learning process. A novel multilabel adaptation of the backpropagation algorithm is proposed that does not assume implicit negativity. In addition, this algorithm can, using a naïve Bayesian approach, infer missing labels in the training data. This algorithm can also be trained incrementally as it dynamically considers new labels. This solution is compared with existing multilabel algorithms using data sets from multiple domains, and the performance is measured with standard multilabel evaluation metrics. It is shown that our algorithm improves classification performance for all metrics by an overall average of 7.4% when at least 40% of the labels are missing from the training data and improves by 18.4% when at least 90% of the labels are missing.  相似文献   

3.
Hu Li  Ye Wang  Hua Wang  Bin Zhou 《World Wide Web》2017,20(6):1507-1525
Imbalanced streaming data is commonly encountered in real-world data mining and machine learning applications, and has attracted much attention in recent years. Both imbalanced data and streaming data in practice are normally encountered together; however, little research work has been studied on the two types of data together. In this paper, we propose a multi-window based ensemble learning method for the classification of imbalanced streaming data. Three types of windows are defined to store the current batch of instances, the latest minority instances, and the ensemble classifier. The ensemble classifier consists of a set of latest sub-classifiers, and the instances employed to train each sub-classifier. All sub-classifiers are weighted prior to predicting the class labels of newly arriving instances, and new sub-classifiers are trained only when the precision is below a predefined threshold. Extensive experiments on synthetic datasets and real-world datasets demonstrate that the new approach can efficiently and effectively classify imbalanced streaming data, and generally outperforms existing approaches.  相似文献   

4.
Feature selection targets the identification of which features of a dataset are relevant to the learning task. It is also widely known and used to improve computation times, reduce computation requirements, and to decrease the impact of the curse of dimensionality and enhancing the generalization rates of classifiers. In data streams, classifiers shall benefit from all the items above, but more importantly, from the fact that the relevant subset of features may drift over time. In this paper, we propose a novel dynamic feature selection method for data streams called Adaptive Boosting for Feature Selection (ABFS). ABFS chains decision stumps and drift detectors, and as a result, identifies which features are relevant to the learning task as the stream progresses with reasonable success. In addition to our proposed algorithm, we bring feature selection-specific metrics from batch learning to streaming scenarios. Next, we evaluate ABFS according to these metrics in both synthetic and real-world scenarios. As a result, ABFS improves the classification rates of different types of learners and eventually enhances computational resources usage.  相似文献   

5.
In many applications of information systems learning algorithms have to act in dynamic environments where data are collected in the form of transient data streams. Compared to static data mining, processing streams imposes new computational requirements for algorithms to incrementally process incoming examples while using limited memory and time. Furthermore, due to the non-stationary characteristics of streaming data, prediction models are often also required to adapt to concept drifts. Out of several new proposed stream algorithms, ensembles play an important role, in particular for non-stationary environments. This paper surveys research on ensembles for data stream classification as well as regression tasks. Besides presenting a comprehensive spectrum of ensemble approaches for data streams, we also discuss advanced learning concepts such as imbalanced data streams, novelty detection, active and semi-supervised learning, complex data representations and structured outputs. The paper concludes with a discussion of open research problems and lines of future research.  相似文献   

6.
在图像标注、疾病诊断等实际分类任务中,数据标记空间的类别通常存在着层次化结构关系,且伴随着特征的高维性.许多层次特征选择算法因不同的实际任务需求而提出,但这些已有的特征选择算法忽略了特征空间的未知性和不确定性.针对上述问题,提出一种基于ReliefF的面向层次分类学习的在线流特征选择算法OH_ReliefF.首先将类别...  相似文献   

7.
Mining with streaming data is a hot topic in data mining. When performing classification on data streams, traditional classification algorithms based on decision trees, such as ID3 and C4.5, have a relatively poor efficiency in both time and space due to the characteristics of streaming data. There are some advantages in time and space when using random decision trees. An incremental algorithm for mining data streams, SRMTDS (Semi-Random Multiple decision Trees for Data Streams), based on random decision trees is proposed in this paper. SRMTDS uses the inequality of Hoeffding bounds to choose the minimum number of split-examples, a heuristic method to compute the information gain for obtaining the split thresholds of numerical attributes, and a Naive Bayes classifier to estimate the class labels of tree leaves. Our extensive experimental study shows that SRMTDS has an improved performance in time, space, accuracy and the anti-noise capability in comparison with VFDTc, a state-of-the-art decision-tree algorithm for classifying data streams.  相似文献   

8.
Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.  相似文献   

9.
In streaming systems the content distribution network routes streams based on interests registered by the consuming entities. In hierarchical streaming, the dissemination is also predicated on the resolution of hierarchical dependencies between various streams. Entities specify explicit wildcards, in addition to the implicit ones in place, to further control the types of streams within a given hierarchy that should be routed to them. This paper presents an analysis and performance evaluation of three different algorithms for hierarchical streaming. In our evaluation of these algorithms we are especially interested in three factors: performance, ability to cope with flux, and memory consumption. Comprehensive benchmarks for these algorithms, in this paper, will enable system designers to harness the best algorithm that satisfies their hierarchical streaming requirements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
复杂数据流中所存在的概念漂移及不平衡问题降低了分类器的性能。传统的批量学习算法需要考虑内存以及运行时间等因素,在快速到达的海量数据流中性能并不突出,并且其中还包含着大量的漂移及类失衡现象,利用在线集成算法处理复杂数据流问题已经成为数据挖掘领域重要的研究课题。从集成策略的角度对bagging、boosting、stacking集成方法的在线版本进行了介绍与总结,并对比了不同模型之间的性能。首次对复杂数据流的在线集成分类算法进行了详细的总结与分析,从主动检测和被动自适应两个方面对概念漂移数据流检测与分类算法进行了介绍,从数据预处理和代价敏感两个方面介绍不平衡数据流,并分析了代表性算法的时空效率,之后对使用相同数据集的算法性能进行了对比。最后,针对复杂数据流在线集成分类研究领域的挑战提出了下一步研究方向。  相似文献   

11.
Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By computing the DTW distance not on raw data but on the time series of the (first, discrete) derivative of the data, we obtain the so-called Derivative Dynamic Time Warping (DDTW) distance measure. DDTW, used alone, is usually inefficient, but there exist datasets on which DDTW gives good results, sometimes much better than DTW. To improve the performance of the two distance measures, we can combine them into a new single (parametric) distance function. The literature contains examples of the combining of DTW and DDTW in algorithms for supervised classification of time series data. In this paper, we demonstrate that combination of DTW and DDTW can also be applied in a method of time series clustering (unsupervised classification). In particular, we focus on a hierarchical clustering (with average linkage) of univariate (one-dimensional) time series data. We construct a new parametric distance function, combining DTW and DDTW, where a single real number parameter controls the contribution of each of the two measures to the total value of the combined distances. The parameter is tuned in the initial phase of the clustering algorithm. Using this technique in clustering methods requires a different approach (to address certain specific problems) than for supervised methods. In the clustering process we use three internal cluster validation measures (measures which do not use labels) and three external cluster validation measures (measures which do use clustering data labels). Internal measures are used to select an optimal value of the parameter of the algorithm, where external measures give information about the overall performance of the new method and enable comparison with other distance functions. Computational experiments are performed on a large real-world data base (UCR Time Series Classification Archive: 84 datasets) from a very broad range of fields, including medicine, finance, multimedia and engineering. The experimental results demonstrate the effectiveness of the proposed approach for hierarchical clustering of time series data. The method with the new parametric distance function outperforms DTW (and DDTW) on the data base used. The results are confirmed by graphical and statistical comparison.  相似文献   

12.
Rectangular treemaps are often the method of choice to visualize large hierarchical datasets. Nowadays such datasets are available over time, hence there is a need for (a) treemaps that can handle time-dependent data, and (b) corresponding quality criteria that cover both a treemap's visual quality and its stability over time. In recent years a wide variety of (stable) treemapping algorithms has been proposed, with various advantages and limitations. We aim to provide insights to researchers and practitioners to allow them to make an informed choice when selecting a treemapping algorithm for specific applications and data. To this end, we perform an extensive quantitative evaluation of rectangular treemaps for time-dependent data. As part of this evaluation we propose a novel classification scheme for time-dependent datasets. Specifically, we observe that the performance of treemapping algorithms depends on the characteristics of the datasets used. We identify four potential representative features that characterize time-dependent hierarchical datasets and classify all datasets used in our experiments accordingly. We experimentally test the validity of this classification on more than 2000 datasets, and analyze the relative performance of 14 state-of-the-art rectangular treemapping algorithms across varying features. Finally, we visually summarize our results with respect to both visual quality and stability to aid users in making an informed choice among treemapping algorithms. All datasets, metrics, and algorithms are openly available to facilitate reuse and further comparative studies.  相似文献   

13.
张志浩  林耀进  卢舜  郭晨  王晨曦 《计算机应用》2021,41(10):2849-2857
多标记特征选择已在图像分类、疾病诊断等领域得到广泛应用;然而,现实中数据的标记空间往往存在部分标记缺失的问题,这破坏了标记间的结构性和关联性,使得学习算法难以准确地选择重要特征。针对此问题,提出一种缺失标记下基于类属属性的多标记特征选择(MFSLML)算法。首先,通过利用稀疏学习方法获取每个类标记的类属属性;同时基于线性回归模型构建类属属性与标记的映射关系,以用于恢复缺失标记;最后,选取7组数据集以及4个评价指标进行实验。实验结果表明:相比基于最大依赖度和最小冗余度的多标记特征选择算法(MDMR)和基于特征交互的多标记特征选择算法(MFML)等一些先进的多标记特征选择算法,MFSLML在平均查准率指标上能够提升4.61~5.5个百分点,由此可见MFSLML具有更优的分类性能。  相似文献   

14.
The Corona Virus Disease 2019 (COVID-19) has been declared a worldwide pandemic, and a key method for diagnosing COVID-19 is chest X-ray imaging. The application of convolutional neural network with medical imaging helps to diagnose the disease accurately, where the label quality plays an important role in the classification problem of COVID-19 chest X-rays. However, most of the existing classification methods ignore the problem that the labels are hardly completely true and effective, and noisy labels lead to a significant degradation in the performance of image classification frameworks. In addition, due to the wide distribution of lesions and the large number of local features of COVID-19 chest X-ray images, existing label recovery algorithms have to face the bottleneck problem of the difficult reuse of noisy samples. Therefore, this paper introduces a general classification framework for COVID-19 chest X-ray images with noisy labels and proposes a noisy label recovery algorithm based on subset label iterative propagation and replacement (SLIPR). Specifically, the proposed algorithm first obtains random subsets of the samples multiple times. Then, it integrates several techniques such as principal component analysis, low-rank representation, neighborhood graph regularization, and k-nearest neighbor for feature extraction and image classification. Finally, multi-level weight distribution and replacement are performed on the labels to cleanse the noise. In addition, for the label-recovered dataset, high confidence samples are further selected as the training set to improve the stability and accuracy of the classification framework without affecting its inherent performance. In this paper, three typical datasets are chosen to conduct extensive experiments and comparisons of existing algorithms under different metrics. Experimental results on three publicly available COVID-19 chest X-ray image datasets show that the proposed algorithm can effectively recover noisy labels and improve the accuracy of the image classification framework by 18.9% on the Tawsifur dataset, 19.92% on the Skytells dataset, and 16.72% on the CXRs dataset. Compared to the state-of-the-art algorithms, the gain of classification accuracy of SLIPR on the three datasets can reach 8.67%-19.38%, and the proposed algorithm also has certain scalability while ensuring data integrity.  相似文献   

15.
在开放环境下,数据流具有数据高速生成、数据量无限和概念漂移等特性.在数据流分类任务中,利用人工标注产生大量训练数据的方式昂贵且不切实际.包含少量有标记样本和大量无标记样本且还带概念漂移的数据流给机器学习带来了极大挑战.然而,现有研究主要关注有监督的数据流分类,针对带概念漂移的数据流的半监督分类的研究尚未引起足够的重视....  相似文献   

16.
李延超  肖甫  陈志  李博 《软件学报》2020,31(12):3808-3822
主动学习从大量无标记样本中挑选样本交给专家标记.现有的批抽样主动学习算法主要受3个限制:(1)一些主动学习方法基于单选择准则或对数据、模型设定假设,这类方法很难找到既有不确定性又有代表性的未标记样本;(2)现有批抽样主动学习方法的性能很大程度上依赖于样本之间相似性度量的准确性,例如预定义函数或差异性衡量;(3)噪声标签问题一直影响批抽样主动学习算法的性能.提出一种基于深度学习批抽样的主动学习方法.通过深度神经网络生成标记和未标记样本的学习表示和采用标签循环模式,使得标记样本与未标记样本建立联系,再回到相同标签的标记样本.这样同时考虑了样本的不确定性和代表性,并且算法对噪声标签具有鲁棒性.在提出的批抽样主动学习方法中,算法使用的子模块函数确保选择的样本集合具有多样性.此外,自适应参数的优化,使得主动学习算法可以自动平衡样本的不确定性和代表性.将提出的主动学习方法应用到半监督分类和半监督聚类中,实验结果表明,所提出的主动学习方法的性能优于现有的一些先进的方法.  相似文献   

17.
Data weighting is of paramount importance with respect to classification performance in pattern recognition applications. In this paper, the output labels of datasets have been encoded using binary codes (numbers) and by this way provided a novel data weighting method called binary encoded output based data weighting (BEOBDW). In the proposed data weighting method, first of all, the output labels of datasets have been encoded with binary codes and then obtained two encoded output labels. Depending to these encoded outputs, the data points in datasets have been weighted using the relationships between features of datasets and two encoded output labels. To generalize the proposed data weighting method, five datasets have been used. These datasets are chain link (2 classes), two spiral (2 classes), iris (3 classes), wine (3 classes), and dermatology (6 classes). After applied BEOBDW to five datasets, the k-NN (nearest neighbor) classifier has been used to classify the weighted datasets. A set of experiments on used real world datasets demonstrated that the proposed data weighting method is a very efficient and has robust discrimination ability in the classification of datasets. BEOBDW method could be confidently used before many classification algorithms.  相似文献   

18.
朱林  雷景生  毕忠勤  杨杰 《软件学报》2013,24(11):2610-2627
针对高维数据的聚类研究表明,样本在不同数据簇往往与某些特定的数据特征子集相对应.因此,子空间聚类技术越来越受到关注.然而,现有的软子空间聚类算法都是基于批处理技术的聚类算法,不能很好地应用于高维数据流或大规模数据的聚类研究中.为此,利用模糊可扩展聚类框架,与熵加权软子空间聚类算法相结合,提出了一种有效的熵加权流数据软子空间聚类算法——EWSSC(entropy-weighting streaming subspace clustering).该算法不仅保留了传统软子空间聚类算法的特性,而且利用了模糊可扩展聚类策略,将软子空间聚类算法应用于流数据的聚类分析中.实验结果表明,EWSSC 算法对于高维数据流可以得到与批处理软子空间聚类方法近似一致的实验结果.  相似文献   

19.
With the advent of Big Data, data is being collected at an unprecedented fast pace, and it needs to be processed in a short time. To deal with data streams that flow continuously, classical batch learning algorithms cannot be applied and it is necessary to employ online approaches. Online learning consists of continuously revising and refining a model by incorporating new data as they arrive, and it allows important problems such as concept drift or management of extremely high-dimensional datasets to be solved. In this paper, we present a unified pipeline for online learning which covers online discretization, feature selection and classification. Three classical methods—the k-means discretizer, the χ2 filter and a one-layer artificial neural network—have been reimplemented to be able to tackle online data, showing promising results on both synthetic and real datasets.  相似文献   

20.
In classification problems with hierarchical structures of labels, the target function must assign labels that are hierarchically organized and it can be used either for single-label (one label per instance) or multi-label classification problems (more than one label per instance). In parallel to these developments, the idea of semi-supervised learning has emerged as a solution to the problems found in a standard supervised learning procedure (used in most classification algorithms). It combines labelled and unlabelled data during the training phase. Some semi-supervised methods have been proposed for single-label classification methods. However, very little effort has been done in the context of multi-label hierarchical classification. Therefore, this paper proposes a new method for supervised hierarchical multi-label classification, called HMC-RAkEL. Additionally, we propose the use of semi-supervised learning, self-training, in hierarchical multi-label classification, leading to three new methods, called HMC-SSBR, HMC-SSLP and HMC-SSRAkEL. In order to validate the feasibility of these methods, an empirical analysis will be conducted, comparing the proposed methods with their corresponding supervised versions. The main aim of this analysis is to observe whether the semi-supervised methods proposed in this paper have similar performance of the corresponding supervised versions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号