首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low bioavailability and short biological half-life of berberine chloride (BBR) negatively affect the protective role of this compound against osteoarthritis (OA). The present study was performed to evaluate the effectiveness of sustained BBR release system. Novel BBR-loaded chitosan microspheres (BBR-loaded CMs) were successfully synthesized using an ionic cross-linking method for sustained release. The basic characteristics of the prepared microspheres were subsequently evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) techniques, encapsulation efficiency (EE), and in vitro release experiments. BBR-loaded CMs displayed spherical forms to encapsulate a considerable quantity of BBR (100.8?±?2.7?mg/g); these microspheres also exhibited an ideal releasing profile. The FT-IR spectra and XRD results revealed that BBR-loaded CMs were successfully synthesized via electrostatic interaction. In vitro experiments further showed that BBR-loaded CMs significantly inhibited sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, and led to increasing mitochondrial membrane potential and maintaining the nuclear morphology. BBR-loaded CMs exerted markedly higher anti-apoptotic activity in the treatment of OA, and markedly inhibited the protein expression levels of caspase-3, a disintegrin, and metalloproteinase with thrombospondin motifs (ADAMTS)-5 and matrix metalloproteinase (MMP)-13 induced by SNP in rat articular chondrocytes, compared with free BBR at equivalent concentration. Therefore, novel BBR-loaded CMs may offer potential for application in the treatment of OA.  相似文献   

2.
The purpose of the present study was to obtain a novel microparticulate formulation of prednisolone, which was adequate for the treatment of inflammatory bowel disease (IBD). The formulations prepared were evaluated in vitro. Two types of chitosan microspheres containing prednisolone, named Ch-Pred and Ch-SP-MS, were prepared by an emulsification-solvent evaporation method using a chitosan-prednisolone mixture and a chitosan-succinyl-prednisolone conjugate (Ch-SP), respectively. Ch-Pred and Ch-SP-MS were obtained in almost spherical shape. Ch-Pred showed a relatively high drug content of 13.2% (w/w), but the particle size was distributed from 10 to 45 µm, and a large initial burst release of approximately 60% was observed. On the other hand, although Ch-SP-MS exhibited a fairly low drug content of 3.5% (w/w), their particle size ranged from several hundred nanometers to 20 µm, with the mean diameter of 5 µm, and a gradual drug release profile was achieved. These characteristics on particle size and in vitro release suggested that Ch-SP-MS should have good potential as a microparticulate system for the treatment of IBD.  相似文献   

3.
The aim of the present study is to develop cross-linked chitosan (CH) films that can release drug over an extended period of time and that too in a controlled manner. A solution of different percentages of CH, is prepared in 1% lactic acid, followed by addition of citalopram (CTP) and then reacted with increasing amounts of glutaraldehyde (GL) to obtain films with different cross-linking densities. Prepared films are characterized for their physical and mechanical properties. The films are then subjected to in vitro drug release studies using pH 7·4 phosphate buffer saline (PBS) as dissolution medium and cumulative amount of drug released is calculated. Kinetic analysis of drug release is performed using Power law model and Higuchi’s model. With increase in concentration of CH, water absorption capacity and mechanical strength are increased; whereas, water vapour permeability and elasticity of the films are decreased. The effect of cross-linking agent, GL, is such that with an increase in the amount of GL, water vapour permeability, water absorption capacity and elasticity of the films are decreased; whereas, mechanical strength increased to some extent and then decreased. In vitro release studies indicate that films containing 3% CH, cross-linked with 2–3% GL and films containing 4% CH, cross-linked 1% GL are able to sustain the drug release for a prolonged time along with releasing almost complete drug in a desired period. Out of these batches, films containing 3% CH, cross-linked with 2–3% GL are having sufficient strength, water vapour permeation, water absorption capacity and elongation at break for implantation purpose. The in vitro degradation studies and histopathological studies were carried out with a sample film (batch C3 as in table 1) in rabbit model. In vitro degradation study indicates that the films maintained their integrity for desired implantation. The histopathological studies under optical microscope indicates that on implanting, there is no evidence of any inflammation, any foreign body granuloma or any necrosis or hemorrhage. Tissue configuration remains unaltered after 30 days of implantation. So, it can be suggested that cross-linked CH films of above said composition can be used as implant for long term application in depression and related disorders.  相似文献   

4.
载药壳聚糖缓释微球的制备及其释放研究   总被引:1,自引:0,他引:1  
实验采用乳化交联法,使用复合交联剂(先用甲醛交联,再用戊二醛交联),制得盐酸四环素壳聚糖缓释微球,并考察不同分子量的壳聚糖、原料质量比、交联剂用量、复合交联剂用量、搅拌速度对微球的影响,筛选出最佳条件制备出戢药微球,并研究了该微球在扫描电镜和倒置式研究型显微镜下的形态及其在pH=7.4,温度为37℃时的释放规律.结果表明,采用复合交联剂的乳化交联法所制得的微球球形好,粒径分布为5~50μm之间,载药量为26.9%,包封率为56.3%,并且具有良好的缓释效果.  相似文献   

5.
Abstract

Objective and methods: This study predicted the nature of chitosan interactions and effects of this interaction on drug release mechanism in simvastatin-loaded chitosan nanoformulation using molecular docking, spectroscopic and thermal analysis.

Significance: This work explains in depth the molecular mechanism of simvastatin and chitosan bond formation in nanoformulation.

Results: The effective encapsulation and sustain release properties of chitosan were indicated by increase in melting endotherm of simvastatin. Intermolecular hydrogen bond between third hydroxyl group pyranone ring of simvastatin and amino group of chitosan represented the stability of active lactone moiety that was not cleaved during formulation which is prerequisite for biological activity. UV–vis spectroscopic characterization, shift in infrared vibration wavenumber of simvastatin and chitosan, ligand titration, 1HNMR and 13C-NMR analyses confirmed this interaction pattern. The pharmacokinetic evaluation in mouse model revealed the sustain release property of nanoformulation.

Conclusion: Thus formation of intermolecular hydrogen bond in nanoformulation contributed to modified physicochemical properties and improved in vivo performance of simvastatin.  相似文献   

6.
3D fibrous scaffolds have received much recent attention in regenerative medicine. Use of fibrous scaffolds has shown promising results in tissue engineering and wound healing. Here we report the development and properties of a novel fibrous scaffold that is useful for promoting wound healing. A scaffold made of salmon fibrinogen and chitosan is produced by electrospinning, resulting in a biocompatible material mimicking the structure of the native extracellular matrix (ECM) with suitable biochemical and mechanical properties. The scaffold is produced without the need for enzymes, in particular thrombin, but is fully compatible with their addition if needed. Human dermal fibroblasts cultured on this scaffold showed progressive proliferation for 14 days. Split-thickness experimental skin wounds treated and untreated were compared in a 10-day follow-up period. Wound healing was more effective using the fibrinogen-chitosan scaffold than in untreated wounds. This scaffold could be applicable in various medical purposes including surgery, tissue regeneration, burns, traumatic injuries, and 3D cell culture platforms.  相似文献   

7.
Cross-linked chitosan microspheres (40–100 μm) with smooth surface were prepared by the methods of emulsification and ethanol coagulant. FTIR results showed that the cross-linking reaction occurred on the amino groups of chitosan molecules. The swelling characteristic of chitosan microspheres was influenced by the environment pH, being generally greater at low rather than higher pH values. The coagulation properties of chitosan microspheres were evaluated by dynamic blood clotting, platelet adhesion and activation, erythrocyte adhesion, hemolysis, and protein absorption assays. Chitosan microspheres can shorten the clotting time and induce the adhesion and activation of platelets. But the shortening of clotting time by chitosan microspheres may be related to not only platelet aggregation, but also erythrocyte aggregation. Take together, chitosan microspheres may be potential use as thrombospheres.  相似文献   

8.
The PEGylated derivatives of rosin-PD-1 and PD-2 synthesized and characterized earlier (Nande et al., 2006) were investigated as potential materials for sustained release microsphere prepared by emulsion solvent evaporation method using diclofenac sodium (DCS) as model drug. All the microspheres exhibited smooth surfaces intercepted by pores; their sizes (d(90)) ranged between 11-24 microm. The entrapment efficiency (< 80%) of the microspheres increased proportionally with derivative concentration. Presence of solvent like isopropyl alcohol or dichloromethane rendered the microspheres with large sizes but with reduced drug entrapment. Microspheres with small size were obtained at an optimum viscosity of liquid paraffin; any change lead to increase in the particle size. Magnesium stearate was found to be most suitable detackifier in the present system. The drug release was directly related to the particle size--small sized microspheres released drug at a faster rate. The dissolution data complied with Higuchi equation while the mechanism of drug release was Fickian diffusion (n approximately 0.5). Controlled inhibition of edema, as tested by hind paw edema method, was observed for 10 h when the microspheres were administered intraperitoneally. The present study found the derivatives as promising materials for preparing microspheres for sustained delivery of DCS.  相似文献   

9.
Context: The present study was carried out to formulate thymoquinone proniosomal formulation (TQP) and evaluate their efficacy in methotrexate (Mtx) induced hepatotoxicity in rats.

Objective: The objective of the study was to explore a new therapeutic approach focusing on hepatoprotective activity using thymoquinone proniosomal formulation.

Material and methods: TQP was formulated using span60, cholesterol and phospholipid by film hydration technique. The animals were divided into six groups with five animals each receiving different treatments for 7?days. On the 8th day, rats were anesthetized with ether, blood samples were withdrawn, livers were dissected out for biochemical tests and histopathological examinations.

Results and discussion: The size of vesicle was found to be in the nanometric range with higher entrapment efficiency. The high entrapment efficiency is probably due to the lipophilic character of TQ. The morphological structure showed the outline and core of the well-identified spherical vesicle, and also displaying the retention of sealed vesicular structure. The release of TQ from developed formulation was found to be significantly higher compared to control. Mtx treated rats showed significant elevation in ALT, AST, ALP and TBARs, whereas, TQP treated group showed significant reduction.

Conclusion: The developed formulation (TQP) significantly inhibited the elevated levels of serum marker enzymes and showed improved histopathological deformities.  相似文献   

10.
The aim of the present work was to prepare floating microspheres of atenolol as prolonged release multiparticulate system and evaluate it using novel multi-compartment dissolution apparatus. Atenolol loaded floating microspheres were prepared by emulsion solvent evaporation method using 32 full factorial design. Formulations F1 to F9 were prepared using two independent variables (polymer ratio and % polyvinyl alcohol) and evaluated for dependent variables (particle size, percentage drug entrapment efficiency and percentage buoyancy). The formulation(F8) with particle size of 329?±?2.69 µm, percentage entrapment efficiency of 61.33% and percentage buoyancy of 96.33% for 12?h was the of optimized formulation (F8). The results of factorial design revealed that the independent variables significantly affected the particle size, percentage drug entrapment efficiency and percentage buoyancy of the microspheres. In vitro drug release study revealed zero order release from F8 (98.33% in 12?h). SEM revealed the hollow cavity and smooth surface of the hollow microspheres.  相似文献   

11.
Chitosan-prednisolone conjugate microspheres (Ch-SP-MS) were prepared, and Eudragit coating was applied in order to efficiently deliver the microspheres and drug to the intestinal disease sites. The Eudragit L100-coated microspheres (Ch-SP-MS/EuL100) were examined for particle characteristics and the release of drug and Ch-SP-MS in different pH media at 37°C. Ch-SP-MS were spherical, with a mean size of 4.5 μm and prednisolone content of 3.3% (w/w). Ch-SP-MS/EuL100 were fairly spherical, with a mean size of 22. 5 μm and drug content of 0.32% (w/w). At pH 1.2, the release extent was less than 5% even at 48 h, and Eudragit coating tended to suppress the release. In contrast, at pH 6.8 and 7.4, Ch-SP-MS/EuL100 tended to show somewhat faster drug release than Ch-SP-MS. Ch-SP-MS/EuL100 displayed a release extent of 23 and 27% at pH 6.8 and 7.4, respectively. Ch-SP-MS aggregated at pH 1.2, but almost kept their initial size and shape at pH 6.8 and 7.4. Ch-SP-MS/EuL100 almost maintained their original shape and size at pH 1.2, and gradually released Ch-SP-MS at pH 6.8 and 7.4 due to dissolution of the Eudragit layer. Eudragit coating is suggested to be useful to efficiently deliver Ch-SP-MS to the intestinal disease sites.  相似文献   

12.
Drug which shows extensive first pass effect is difficult task that, needs to be solved by formulators in the pharmaceutical science. The low oral bioavailability (49%) of flutamide may be due to poor wettability, low aqueous solubility and extensive first pass effect. The aim of present investigation was to prepare flutamide loaded microspheres and incorporate it into suppositories for rectal delivery to avoid first pass effect and enhance residence time. Flutamide loaded mucoadhesive microspheres of Ocimum Basilicum mucilage (OBM) were prepared using spray drying and characterized by percent production yield, encapsulation efficiency, particle size, zeta potential, polydispersity index, DSC, SEM, XRPD, in vitro drug release and stability studies. Moreover, ex vivo mucoadhesion was investigated using falling liquid film technique to determine the adhesion of microspheres to sheep rectal mucosa. The microspheres had nearly spherical shape and size about 2.53?μm. The encapsulation efficiency and mucoadhesion of optimized formulation MBF10 were found to be 69.6?±?2.3% and 89.01?±?2.18%, respectively. Percent CDR of optimized flutamide loaded mucoadhesive microspheres was found to be 88.7?±?1.3 at 7?h. In conclusion, OBM microparticles based suppository could be used to deliver drug through rectal delivery.  相似文献   

13.
Gastric emptying is a complex process that is highly variable and makes the in vivo performance of drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug delivery systems for more than 12 hours utilizing floating or hydrodynamically controlled drug delivery systems. The objective of this investigation was to develop a floating, depot-forming drug delivery system for an antidiabetic drug based on microparticulate technology to maintain constant plasma drug concentrations over a prolonged period of time for effective control of blood sugar levels. Formulations were optimized using cellulose acetate as the polymer and evaluated in vitro for physicochemical characteristics and drug release in phosphate buffered saline (pH 7.4), and evaluated in vivo in healthy male albino mice. The shape and the surface morphology of the prepared microspheres were characterized by optical microscopy and scanning electron microscopy. In vitro drug release studies were performed and drug release kinetics were calculated using the linear regression method. Effects of stirring rate during preparation and polymer concentration on the size of microspheres and drug release were observed. The prepared microspheres exhibited prolonged drug release (more than 10 hours) and remained buoyant for over 10 hours. Spherical and smooth-surfaced microspheres with encapsulation efficiency ranging from 73% to 98% were obtained. The release rate decreased and the mean particle size increased at higher polymer concentrations. Stirring speed affected the morphology of the microspheres. This investigation revealed that upon administration, the biocompatible depot-forming polymeric microspheres controlled the drug release and plasma sugar levels more efficiently than plain orally given drug. These formulations, with their reduced frequency of administration and better control over drug disposition, may provide an economic benefit to the user compared with products currently available for diabetes control.  相似文献   

14.
Context: Nanosuspensions (NSs) of poorly water-soluble drugs are known to increase the oral bioavailability.

Objectives: The purpose of this study was to develop NS of efavirenz (EFV) and to investigate its potential in enhancing the oral bioavailability of EFV.

Materials and methods: EFV NS was prepared using the media milling technique. The Box–Behnken design was used for optimization of the factors affecting EFV NS. Sodium lauryl sulfate and PVP K30 were used to stabilize the NS. Freeze-dried NS was completely re-dispersed with double-distilled filtered water.

Results: Mean particle size and zeta potential of the optimized NS were found to be 320.4?±?3.62?nm and –32.8?±?0.4 mV, respectively. X-ray diffraction and differential scanning calorimetric analysis indicated no phase transitions. Rate and extent of drug dissolution in the dissolution medium for NS was significantly higher compared to marketed formulation. The parallel artificial membrane permeability assay revealed that NS successfully enhanced the permeation of EFV. Results of in situ absorption studies showed a significant difference in absorption parameters such as Ka, t1/2 and uptake percentages between lyophilized NS and marketed formulation of EFV. Oral bioavailability of EFV in rabbits resulting from NS was increased by 2.19-fold compared to the marketed formulation.

Conclusion: Thus, it can be concluded that NS formulation of EFV can provide improved oral bioavailability due to enhanced solubility, dissolution velocity, permeability and hence absorption.  相似文献   

15.
16.
Cardiac dysfunction following acute myocardial infarction is a major cause of death in the world and there is a compelling need for new therapeutic strategies. In this report we demonstrate that a direct cardiac injection of drug-loaded microparticles, formulated from the polymer poly(cyclohexane-1,4-diylacetone dimethylene ketal) (PCADK), improves cardiac function following myocardial infarction. Drug-delivery vehicles have great potential to improve the treatment of cardiac dysfunction by sustaining high concentrations of therapeutics within the damaged myocardium. PCADK is unique among currently used polymers in drug delivery in that its hydrolysis generates neutral degradation products. We show here that PCADK causes minimal tissue inflammatory response, thus enabling PCADK for the treatment of inflammatory diseases, such as cardiac dysfunction. PCADK holds great promise for treating myocardial infarction and other inflammatory diseases given its neutral, biocompatible degradation products and its ability to deliver a wide range of therapeutics.  相似文献   

17.
Traditional chitosan hydrogels were prepared by chemical or physical crosslinker, and both of the two kinds of hydrogels have their merits and demerits. In this study, researchers attempted to prepare one kind of chitosan hydrogel by slightly crosslinker, which could combine the advantages of the two kinds of hydrogels. In this experiment, the crosslinker was formed by a reaction between the isocyanate group of 1,6-diisocyanatohexan and the hydroxyl group of polyethylene glycol-400 (PEG-400), then the crosslinker reacted with the amidine and the hydroxyl group of ethylene glycol chitosan to form the network structure. Physical properties of the hydrogel were tested by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and biodegradation. Biocompatibility was assessed by cell implantation in vitro and the scaffold was used as a cartilage tissue engineering scaffold to repair a defect in rabbit knee joints in vivo. FTIR results show the formation of a covalent bond during thickening of the ethylene glycol chitosan. SEM and degradation experiments showed that the ethylene glycol chitosan hydrogel is a 3-D, porous, and degradable scaffold. The hydrogel contained 2 % ethylene glycol chitosan and 10 μl crosslinker was selected for the biocompatibility experiment in vitro and in vivo. After chondrocytes were cultured in the ethylene glycol chitosan hydrogel scaffold for 1 week cells exhibited clustered growth and had generated extracellular matrix on the scaffold in vitro. The results in vivo showed that hydrogel-chondrocytes promoted the repair of defect in rabbits. Based on these results, it could be concluded that ethylene glycol chitosan hydrogel is a scaffold with excellent physicochemical properties and it is a promising tissue engineering scaffold.  相似文献   

18.
Background: Various approaches have been used to retain the dosage form in stomach as a way of increasing the gastric residence time, including floatation systems; high-density systems; mucoadhesive systems; magnetic systems; unfoldable, extensible, or swellable systems; and superporous hydrogel systems. Aim?: The objective of this study was to prepare and evaluate floating microspheres of rosiglitazone maleate for the prolongation of gastric residence time. Method: The microspheres were prepared by solvent diffusion–evaporation method using ethyl cellulose and hydroxypropylmethylcellulose. A full factorial design was applied to optimize the formulation. Results: Preliminary studies revealed that the polymer:drug ratio, concentration of polymer, and stirring speed significantly affected the characteristics of microspheres. The optimum batch exhibited a prolonged drug release, remained buoyant for >12 hours, high entrapment efficiency, and particle size in the order of 350 μm. Conclusion: The results of 32 full factorial design revealed that the concentration of ethylcellulose 7 cps (X1) and stirring speed (X2) significantly affected drug entrapment efficiency, percentage release after 8 h and particle size of microspheres.  相似文献   

19.
Purpose: The conventional dosage form of Ketoconazole (KZ) shows poor absorption due to rapid gastric emptying. Chitosan based mucoadhesive nanoparticles (NPs) of KZ were developed to efficiently release drug at its absorption window i.e. stomach and the site of action i.e. esophagus.

Method: The NPs were prepared by ionic gelation method. Concentration of polymer, cross-linking agent and ratio of drug/polymer as well as polymer/cross linking agent were optimized.

Results: NPs had 69.16?±?5.91% mucin binding efficiency, particle size of 382.6?±?2.384?nm, ζ potential of +48.1?mv and entrapment efficiency of 59.84 ± 1.088%. DSC thermogram indicated absence of any drug polymer interaction. The drug release was by controlled, non-fickian diffusion mechanism. Ex vivo diffusion studies were performed by emptying the stomach contents after 2?h to simulate in vivo gastric emptying. The results showed that drug diffusion from the solution across stomach mucosa stopped after emptying whereas that from the NPs continued upto 5?h. Hence we could conclude that the NPs must have adhered to the stomach mucosa and thereby would have been retained at this absorption site even after gastric emptying.

Conclusion: The orally delivered KZ loaded mucoadhesive NPs can be used as an efficient carrier for delivering drug at its absorption window i.e. the stomach and the site of action i.e. esophagus even after gastric emptying.  相似文献   

20.
This study describes the preparation and the evaluation of biodegradation monomethoxy (polyethylene glycol)-poly (lactide-co-glycolide)-monomethoxy (polyethyleneglycol) (mPEG-PLGA-mPEG, PELGE) nanoparticles (PELGE-NP) containing mitoxantrone (DHAQ) as a model drug. PELGE copolymers with various molar ratios of lactic to glycolic acid and different molecular weights and various content mPEG were synthesized by ring-opening polymerization. mPEG with weight-average molecular weight (Mw) 2000 or 5000 was introduced as a hydrophilic segment into a hydrophobic PLGA. A double emulsion method with dextran70 as stabilizer in the external aqueous phase was used to prepare the nanoparticles. The drug entrapment efficiencies were more than 80% and the mean diameters of the nanoparticles were less than 200 nm. Various PELGE was studied as biodegradable drug carriers and there in vitro/in vivo release profiles were examined. It was found that drug loading, polymer molecular weight, copolymer composition and end group modifications were critical factors affecting the in vitro/in vivo release properties. The amount of drug released increased as the mPEG contents increased and the molar ratios of lactic acid decreased in vitro. The intravenous (i.v.) administration of mPEG-PLGA–mPEG nanoparticles of DHAQ in mice resulted in prolonged DHAQ residence in systemic blood circulation compared to the intravenous administration of PLGA nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号