首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
STUDY OBJECTIVE: To investigate the effect of short-term inhalation of nitric oxide (NO) on transpulmonary angiotensin II formation in patients with severe ARDS. DESIGN: Prospective, clinical study. SETTING: Anesthesiology ICU of a university hospital. PATIENTS: Ten ARDS patients who responded to inhalation of 100 ppm NO by decreasing their pulmonary vascular resistance (PVR) by at least 20 dyne x s x cm(-5) were included in the study. INTERVENTIONS AND MEASUREMENTS: In addition to standard treatment, the patients inhaled 0, 1, and 100 ppm NO in 20-min intervals. Fraction of inspired oxygen was 1.0. Hemodynamics were measured and recorded online. Mixed venous (pulmonary arterial catheter) and arterial (arterial catheter) blood samples were taken simultaneously for hormonal analyses at the end of each inhalation period. RESULTS: Pulmonary arterial pressure decreased from 33+/-2 mm Hg (0 ppm NO, mean+/-SEM) to 29+/-2 mm Hg (1 ppm NO, p<0.05), and to 27+/-2 mm Hg (100 ppm NO, p<0.05, vs 0 ppm). PVR decreased from 298+/-56 (0 ppm NO) to 243+/-45 dyne x s x cm(-5) (1 ppm NO, not significant [NS]), and to 197+/-34 dyne x s x cm(-5) (100 ppm NO, p<0.05, vs 0 ppm). Arterial oxygen pressure increased from 174+/-23 mm Hg (0 ppm NO) to 205+/-26 mm Hg (1 ppm NO, NS), and to 245+/-25 mm Hg (100 ppm NO, p <0.05, vs 0 ppm). Mean plasma angiotensin II concentrations were 85+/-20 (arterial) and 57+/-13 pg/mL (mixed venous) during 0 ppm NO and did not change during inhalation of 1 and 100 ppm NO. Mean transpulmonary plasma angiotensin II concentration gradient (=difference between arterial and mixed venous blood values) was 28+/-8 pg/mL (range, 0 to 69) during 0 ppm NO and did not change during inhalation of 1 and 100 ppm NO. Mean transpulmonary angiotensin II formation (transpulmonary angiotensin II gradient multiplied with the cardiac index) was 117+/-39 ng/min/m2 (range, 0 to 414) during 0 ppm NO and did not change during inhalation of 1 and 100 ppm NO. Mean arterial plasma cyclic guanosine monophosphate concentration was 11+/-2 pmol/mL (0 ppm NO), did not change during 1 ppm NO, and increased to 58+/-8 pmol/mL (100 ppm NO, p<0.05). Arterial plasma concentrations of aldosterone (142+/-47 pg/mL), atrial natriuretic peptide (114+/-34 pg/mL), angiotensin-converting enzyme (30+/-5 U/L), and plasma renin activity (94+/-26 ng/mL/h of angiotensin I) did not change. CONCLUSION: The decrease of PVR by short-term NO inhalation in ARDS patients was not accompanied by changes in transpulmonary angiotensin II formation. Our results do not support any relationship between transpulmonary angiotensin II formation and the decrease in PVR induced by inhaled NO.  相似文献   

2.
The aim of this study was to determine whether low-dose inhalation of nitric oxide (NO) improves pulmonary haemodynamics and gas exchange in patients with stable idiopathic pulmonary fibrosis (IPF). The investigation included 10 IPF patients breathing spontaneously. Haemodynamic and blood gas parameters were measured under the following conditions: 1) breathing room air; 2) during inhalation of 2 parts per million (ppm) NO with room air; 3) whilst breathing O2 alone (1 L.min-1); and 4) during combined inhalation of 2 ppm NO and O2 (1 L.min-1). During inhalation of 2 ppm NO with room air the mean pulmonary arterial pressure (Ppa 25 +/- 3 vs 30 +/- 4 mmHg) and the pulmonary vascular resistance (PVR 529 +/- 80 vs 699 +/- 110 dyn.s.cm-5) were significantly (p < 0.01) lower than levels measured whilst breathing room air alone. However the arterial oxygen tension (Pa,O2) did not improve. The combined inhalation of NO and O2 produced not only a significant (p < 0.01) decrease of Ppa (23 +/- 2 vs 28 +/- 3 mmHg) but also, a remarkable improvement (p < 0.05) in Pa,O2 (14.2 +/- 1.2 vs 11.7 +/- 1.0 kPa) (107 +/- 9 vs 88 +/- 7 mmHg)) as compared with the values observed during the inhalation of O2 alone. These findings suggest that the combined use of nitric oxide and oxygen might constitute an alternative therapeutic approach for treating idiopathic pulmonary fibrosis patients with pulmonary hypertension. However, further studies must first be carried out to demonstrate the beneficial effect of oxygen therapy on pulmonary haemodynamics and prognosis in patients with idiopathic pulmonary fibrosis and to rule out the potential toxicity of inhaled nitric oxide, particularly when used in combination with oxygen.  相似文献   

3.
OBJECTIVES: This study sought to determine the site of increased pulmonary vascular resistance (PVR) in primary pulmonary hypertension by standard bedside hemodynamic evaluation. BACKGROUND: The measurement of pulmonary vascular pressures at several levels of flow (Q) allows the discrimination between active and passive, flow-dependent changes in mean pulmonary artery pressure (Ppa), and may detect the presence of an increased pulmonary vascular closing pressure. The determination of a capillary pressure (Pc') from the analysis of a Ppa decay curve after balloon occlusion allows the partitioning of PVR in an arterial and a (capillary + venous) segment. These approaches have not been reported in primary pulmonary hypertension. METHODS: Ppa and Pc' were measured at baseline and after an increase in Q induced either by exercise or by an infusion of dobutamine, at a dosage up to 8 microg/kg body weight per min, in 11 patients with primary pulmonary hypertension. Reversibility of pulmonary hypertension was assessed by the inhalation of 20 ppm nitric oxide (NO), and, in 6 patients, by an infusion of prostacyclin. RESULTS: At baseline, Ppa was 52+/-3 mm Hg (mean value+/-SE), Q 2.2+/-0.2 liters/min per m2, and Pc' 29+/-3 mm Hg. Dobutamine did not affect Pc' and allowed the calculation of an averaged extrapolated pressure intercept of Ppa/Q plots of 34 mm Hg. Inhaled NO had no effect. Prostacyclin decreased Pc' and PVR. Exercise increased Pc' to 40+/-3 mm Hg but did not affect PVR. CONCLUSIONS:ns. These findings are compatible with a major increase of resistance and reactivity at the periphery of the pulmonary arterial tree.  相似文献   

4.
BACKGROUND AND METHODS: To find an intra-abdominal pressure (IAP) range for laparoscopic procedures that elicits only moderate splanchnic and pulmonary hemodynamic and metabolic changes, including hepatic and intestinal tissue pH and superficial hepatic blood flow, we installed an IAP of 7 and 14 mm Hg each for 30 minutes in 10 healthy pigs (30 +/- 4 kg). RESULTS: In parallel with the increase of IAP, the mean transmural pulmonary artery pressure increased (from 25 +/- 3 to 27 +/- 4 at 7 mm Hg IAP and 30 +/- 6 mm Hg at 14 mm Hg IAP, p < 0.05); the pulmonary artery-to-pulmonary capillary wedge pressure gradient also increased (from 17 +/- 2.7 to 21 +/- 3 mm Hg at 7 mm Hg IAP and 24 +/- 4.2 mm Hg at 14 mm Hg IAP, p < 0.01), and the arterial oxygenation decreased (p < 0.005). Relevant changes at an IAP of 14 mm Hg were observed in right atrial pressure during inspiration (from 7 +/- 2 to 12 +/- 3 mm Hg, p < 0. 0001) and in abdominal aortic flow (from 1.43 +/- 0.4 to 1.19 +/- 0. 3 L/min, p < 0.01). However, transmural right atrial pressure and cardiac output remained essentially unchanged. Portal and hepatic venous pressure increased in parallel with the IAP (portal: from 12 +/- 3 to 17 +/- 3 at 7 mm Hg IAP and 22 +/- 3 mm Hg at 14 mm Hg IAP, p < 0.01; hepatic venous: from 8 +/- 3 to 14 +/- 6 at 7 mm Hg IAP and 19 +/- 6 mm Hg at 14 mm Hg IAP, p < 0.005), but the transmural portal and hepatic venous pressures decreased (p < 0.01), indicating decreased venous filling. Portal flow was maintained at 7 mm Hg but decreased at 14 mm Hg from 474 +/- 199 to 395 +/- 175 mL/min (p < 0. 01), whereas hepatic arterial flow remained stable. Hepatic superficial blood flow decreased during insufflation and increased after desufflation. Tissue pH fell together with portal and hepatic venous pH (intestinal: from 7.323 +/- 0.05 to 7.217 +/- 0.04; hepatic: from 7.259 +/- 0.04 to 7.125 +/- 0.06, both p < 0.01) at 14 mm Hg. CONCLUSION: The hemodynamic and metabolic derangement in the pulmonary and splanchnic compartments are dependent on the extent of carbon dioxide pneumoperitoneum. The effect of low IAP (7 mm Hg) on splanchnic perfusion is minimal. However, higher IAPs (14 mm Hg) decrease portal and superficial hepatic blood flow and hepatic and intestinal tissue pH.  相似文献   

5.
STUDY OBJECTIVE: To evaluate the percentage of nitric oxide (NO) responders in septic shock patients with ARDS. Additionally, to investigate long-term NO effects on cardiac performance and oxygen kinetic patterns in NO responders vs nonresponders. DESIGN: Prospective cohort study. SETTING: ICU of a university hospital. PATIENTS: Twenty-five consecutive patients with a diagnosis of septic shock and established ARDS requiring inotropic and vasopressor support. INTERVENTIONS: After diagnosis of ARDS, NO was administered at 18 or 36 ppm. Patients demonstrating a NO-induced rise of arterial oxygen tension of 20% or more and/or a fall in mean pulmonary artery pressure of 15% or more were grouped as NO responders; others were grouped as nonresponders. MEASUREMENTS AND RESULTS: Ten patients (40%) were NO responders, while 15 patients (60%) were nonresponders. Mortality was 40% in NO responders and 67% in nonresponders (NS). NO responders developed a significantly lower mean pulmonary artery pressure (28 +/- 6 vs 33 +/- 6 mm Hg; p < 0.05), lower pulmonary vascular resistance (PVR: 258 +/- 73 vs 377 +/- 163 dyne.s.cm-5.m-2; p < 0.05), and higher PaO2/FIO2 ratio (192 +/- 85 vs 144 +/- 74 mm Hg; p < 0.05) within the study period. In responders, NO-induced afterload reduction resulted in increased right ventricular ejection fraction (RVEF: 40 +/- 7 vs 35 +/- 9%; p < 0.05), significantly higher cardiac index (CI: 4.5 +/- 1.1 vs 4.0 +/- 1.2 L.min-1.m-2; p < 0.05) and oxygen delivery (DO2: 681 +/- 141 vs 599 +/- 160 mL.min-1.m-2; p < 0.05) compared with nonresponders. In NO nonresponders, RVEF was correlated with PVR, CI, DO2, mixed venous oxygen saturation (SvO2), and oxygen extraction ratio (O2ER) (r = +/- 0.60 to +/- 0.69; p < 0.05). No significant correlation between RVEF and any of these parameters was observed in responders. SvO2 (75 +/- 7 vs 69 +/- 8%; p < 0.05) and O2ER (0.24 +/- 0.06 vs 0.27 +/- 0.06; p < 0.05) were significantly different between responders and nonresponders, while no difference in oxygen consumption was observed (161 +/- 41 vs 153 +/- 43 mL.min.m-2). CONCLUSIONS: Inhaled NO is effective in only a subgroup of septic ARDS patients, with a higher, but insignificantly different percentage of survivors in the responder group. NO responders were characterized by increased RVEF accompanied by higher CI, DO2, and lower O2ER. In nonresponders, RVEF remained depressed, with a close correlation between RVEF and CO as well as DO2 and O2ER. Thus, nonresponders seem to suffer from impaired cardiac reserves and correspondingly lower oxygen transport variables.  相似文献   

6.
Increased pulmonary vascular resistance (PVR) and mismatch in ventilation-to-perfusion ratio characterize acute lung injury (ALI). Pulmonary arterial pressure (Ppa) decreases when nitric oxide (NO) is inhaled during hypoxic pulmonary vasoconstriction (HPV); thus NO inhalation may reduce PVR and improve gas exchange in ALI. We studied the hemodynamic and gas exchange effects of NO inhalation during HPV and then ALI in eight anesthetized open-chest mechanically ventilated dogs. Right atrial pressure, Ppa, and left ventricular and arterial pressures were measured, and cardiac output was estimated by an aortic flow probe. Shunt and dead space were also estimated. The effect of 5-min exposures to 0, 17, 28, 47, and 0 ppm inhaled NO was recorded during hyperoxia, hypoxia, and oleic acid-induced ALI. During ALI, partial beta-adrenergic blockade (propranolol, 0.15 mg/kg i.v.) was induced and 74 ppm NO was inhaled. Nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) levels were measured. During hyperoxia, NO inhalation had no measurable effects. Hypoxia increased Ppa (from 19.8 +/- 6.1 to 28.3 +/- 8.7 mmHg, P < 0.01) and calculated PVR (from 437 +/- 139 to 720 +/- 264 dyn.s.cm-5, P < 0.01), both of which decreased with 17 ppm NO. ALI decreased arterial PO2 and increased airway pressure, shunt, and dead space ventilation. Ppa (19.8 +/- 6.1 vs. 23.4 +/- 7.7 mmHg) and PVR (437 +/- 139 vs. 695 +/- 359 dyn.s.cm-5, P < 0.05) were greater during ALI than during hyperoxia. No inhalation had no measureable effect during ALI before or after beta-adrenergic blockade. MetHb remained low, and NO-Hb was unmeasurable. Bolus infusion of nitroglycerin (15 micrograms) induced an immediate decrease in Ppa and PVR during ALI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
BACKGROUND: Pulmonary vasodilatation with a 100 ppm concentration of NO given as a short burst of a few milliliters at the beginning of each breath (NOmin) was compared with conventionally inhaled NO, in which a full breath of 40 ppm of NO was inhaled (NOCD). METHODS AND RESULTS: NOmin was studied in 16 patients with severe pulmonary hypertension and in 16 isolated porcine lungs with experimentally induced pulmonary hypertension. We compared volumes of 8 to 38 mL of 100 ppm NO in N2 injected at the beginning of each breath with conventional inhalation of 40 ppm NO in air. NOCD and NOmin were studied in 4 pigs after inhibition of NO synthase with NG-nitro-L-arginine methyl ester (1 to 2 mg/kg IV) had raised the pulmonary vascular resistance index (PVRI) from 4.4+/-0.8 to 10. 0+/-1.6 mm Hg. L-1. min-1. kg-1. A similar comparison was made in 7 isolated porcine lungs after the thromboxane analogue U46619 (10 pmol. L-1. min-1) increased the mean PVRI from 4.6+/-0.8 to 12.2+/-1. 3 mm Hg. L-1. min-1. kg-1. Patients' mean PVRI was reduced from 29. 2+/-3.7 to 24.0+/-3.1 with NOmin and 24.5+/-3.3 mm Hg. L-1. min-1. m-2 (mean+/-SEM) with NOCD. In isolated porcine lungs, there was the same reduction of PVRI for NOmin and NOCD between 12.7% and 34.8%. CONCLUSIONS: A small volume of NO inhaled at the beginning of the breath was equally effective as NOCD but reduced the dose of NO per breath by 40-fold, which ranged from 1.2x10(-8) (0.4 microg) to 1. 6x10(-7) mol/L (4.8 microg) compared with 5.3x10(-7) (16 microg) to 1.2x10(-6) mol/L (36 microg) per breath with NOCD.  相似文献   

8.
This study evaluated the dose-response effect of inhaled nitric oxide (NO) on gas exchange, haemodynamics, and respiratory mechanics in patients with adult respiratory distress syndrome (ARDS). Of 19 consecutive ARDS patients on mechanical ventilation, eight (42%) responded to a test of 10 parts per million (ppm) NO inhalation with a 25% increase in arterial oxygen tension (Pa,O2,) over the baseline value. The eight NO-responders were extensively studied during administration of seven inhaled NO doses: 0.5, 1, 5, 10, 20, 50 and 100 ppm. Pulmonary pressure and pulmonary vascular resistance exhibited a dose-dependent decrease at NO doses of 0.5-5 ppm, with a plateau at higher doses. At all doses, inhaled NO improved O2 exchange via a reduction in venous admixture. On average, the increase in Pa,O2, was maximal at 5 ppm NO. Some patients, however, exhibited maximal improvement in Pa,O2 at 100 ppm NO. In all patients, the increase in arterial O2 content was maximal at 5 ppm NO. The lack of further increase in arterial O2 content above 5 ppm partly depended on an NO-induced increase in methaemoglobin. Respiratory mechanics were not affected by NO inhalation. In conclusion, NO doses < or =5 ppm are effective for optimal treatment both of hypoxaemia and of pulmonary hypertension in adult respiratory distress syndrome. Although NO doses as high as 100 ppm may further increase arterial oxygen tension, this effect may not lead to an improvement in arterial O2 content, due to the NO-induced increase in methaemoglobin. It is important to consider the effect of NO not only on arterial oxygen tension, but also on arterial O2 content for correct management of inhaled nitric oxide therapy.  相似文献   

9.
BACKGROUND: Inhaled nitric oxide (NO) has been shown to be a selective pulmonary vasodilator in certain patients with primary pulmonary hypertension (PPH). ObJECTIVES: The purpose of this study was to design and test a system for delivery of NO to awaken, ambulatory patients with PPH and to evaluate this system in the home setting. METHODS: The ambulatory delivery system consisted of a tank of 80 ppm of NO (balance N2), a modified gas-pulsing device, and nasal cannulas. The pulsing device was set to deliver NO for 0.1 s at the beginning of each inspiration. RESULTS: Using this system, eight patients with PPH were studied with pulmonary artery catheters in place. Inhalation of NO led to significant reductions in both mean pulmonary arterial pressure (PAPm) (51 +/-12 to 43 +/- 10 mm Hg; p=0.001) and pulmonary vascular resistance (PVR) (790 +/- 285 to 620 +/- 208 dyne x s x cm-5; p=0.01). Three of the eight patients had both greater than 20% and greater than 30% decreases in PAPm and PVR, respectively. No exhaled NO or N02 was detectable in any of the eight patients. One patient was discharged home from the hospital on a regimen of inhaled NO. At 9 months, no adverse effects were noted and the system was working well. CONCLUSIONS: Pulsed delivery of inhaled NO to ambulatory patients with PPH, via nasal prongs, is feasible and, in some patients, leads to significant improvement in pulmonary hypertension. Inhaled 09NO, therefore, may have a role in the long-term treatment of patients with PPH.  相似文献   

10.
Inhaled nitric oxide (iNO), a selective pulmonary vasodilator and intravenously administered almitrine, a selective pulmonary vasoconstrictor, have been shown to increase PaO2 in patients with acute respiratory distress syndrome (ARDS). This prospective study was undertaken to assess the cardiopulmonary effects of combining both drugs. In 48 consecutive patients with early ARDS, cardiorespiratory parameters were measured at control, after iNO 5 ppm, after almitrine 4 micrograms. kg-1. min-1, and after the combination of both drugs. In 30 patients, dose response to 2, 4, and 16 micrograms. kg-1. min-1 of almitrine with and without NO was determined. Almitrine and lactate plasma concentrations were measured in 17 patients. Using pure O2, PaO2 increased by 75 +/- 8 mm Hg after iNO, by 101 +/- 12 mm Hg after almitrine 4 micrograms. kg-1. min-1, and by 175 +/- 18 mm Hg after almitrine combined with iNO (p < 0.001). In 63% of the patients, PaO2 increased by more than 100% with the combination of both drugs. Mean pulmonary artery pressure (Ppa) increased by 1.4 +/- 0.2 mm Hg with almitrine 4 micrograms/kg/ min (p < 0.001) and decreased by 3.4 +/- 0.4 mm Hg with iNO and by 1.5 +/- 0.3 mm Hg with the combination (p < 0.001). The maximum increase in PaO2 was obtained at almitrine concentrations <= 4 micrograms. kg-1. min-1, whereas almitrine increased Ppa dose-dependently. Almitrine plasma concentrations also increased dose-dependently and returned to values close to zero after 12 h. In many patients with early ARDS, the combination of iNO 5 ppm and almitrine 4 micrograms. kg-1. min-1 dramatically increases PaO2 without apparent deleterious effect allowing a rapid reduction in inspired fraction of O2. The long-term consequences of this immediate beneficial effect remain to be determined.  相似文献   

11.
BACKGROUND: We describe the hemodynamic response to initiation and withdrawal of inhaled nitric oxide (NO) in infants with pulmonary hypertension after surgical repair of total anomalous pulmonary venous connection. METHODS: Between January 1, 1992, and January 1, 1995, 20 patients underwent repair of total anomalous pulmonary venous connection. Nine patients had postoperative pulmonary hypertension and received a 15-minute trial of inhaled NO at 80 parts per million. Five of these patients received prolonged treatment with NO at 20 parts per million or less. RESULTS: Mean pulmonary artery pressure decreased from 35.6 +/- 2.4 to 23.7 +/- 2.0 mm Hg (mean +/- standard error of the mean) (p = 0.008), and pulmonary vascular resistance decreased from 11.5 +/- 2.0 to 6.4 +/- 1.0 U.m2 (p = 0.03). After prolonged treatment with NO, pulmonary artery pressure increased transiently in all patients when NO was discontinued. CONCLUSIONS: After operative repair of total anomalous pulmonary venous connection, inhaled NO selectively vasodilated all patients with pulmonary hypertension. Withdrawal of NO after prolonged inhalation was associated with transient rebound pulmonary hypertension that dissipated within 60 minutes. Appreciation of rebound pulmonary hypertension may have important implications for patients with pulmonary hypertensive disorders when interruption of NO inhalation is necessary or when withdrawal of NO is planned.  相似文献   

12.
We investigated the effects of aerosolized prostacyclin (PGI2) administration on hemodynamics and pulmonary gas exchange in 8 patients with severe respiratory failure and acute pulmonary hypertension. Nebulization of epoprostenol (5 ng/kg body weight for 15 min) decreased mean pulmonary blood pressure from 41.2 +/- 6.7 mm Hg (mean +/- SD, before administration) to 36.1 +/- 6 mm Hg < or = 15 min (p < 0.05). The effect was reversed 10 min after discontinuation of PGI2 (40.9 +/- 6.3 mm Hg). Pulmonary vascular resistance index (339 +/- 138 dynes.s.cm-5.m2, before administration) was significantly (p < 0.05) reduced < or = 15 min (260 +/- 89 dynes.s.cm-5.m2) and increased again after discontinuation of PGI2 (341 +/- 142 dynes.s.cm-5.m2). The ratio of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2) increased from 119 +/- 34 mm Hg (before administration) to 163 +/- 76 mm Hg (15 min after initiation of administration p < 0.05) and was reduced after PGI2 discontinuation (116 +/- 35 mm Hg). Heart rate, mean blood pressure, central venous pressure, and pulmonary arterial wedge pressure remained unchanged, whereas cardiac index was slightly reduced. We assume that PGI2 aerosolization is a beneficial technique, applied with a ventilator nebulization system. The beneficial effect might be caused by selective pulmonary vasodilatation in well-ventilated areas of the lung.  相似文献   

13.
BACKGROUND: Reports of pulmonary edema complicating inhaled nitric oxide therapy in patients with chronic heart failure and pulmonary hypertension have raised the concern that inhaled nitric oxide may have negative inotropic effects. METHODS AND RESULTS: We investigated the effect of multiple doses of inhaled nitric oxide (20, 40 and 80 ppm) on left ventricular contractile state in 10 open-chest pigs. Pressure-volume loops were generated during transient preload reduction to determine the end-systolic pressure-volume relationship and the stroke work-end-diastolic volume relation. Inhaled nitric oxide had no effect on systemic vascular resistance, cardiac output, end-systolic pressure volume relationship or stroke work-end-diastolic volume relation under normal conditions. After induction of pulmonary hypertension (intravenous thromboxane A2 analog), inhalation of nitric oxide (80 ppm) resulted in a reduction in pulmonary vascular resistance (mean +/- standard error of the mean) from 10.4 +/- 3 to 6.5 +/- 2 Wood units (p < 0.001) and in pulmonary artery pressure from 44 +/- 4 to 33 +/- 4 mm Hg (p < 0.05). Left ventricular end-diastolic volume rose from 53 +/- 9 ml to 57 +/- 10 ml (p = 0.02). No statistically significant change in cardiac output or systemic vascular resistance was observed. Inhaled nitric oxide had no effect on end-systolic pressure-volume relationship or stroke work-end-diastolic volume relation. CONCLUSIONS: In a porcine model of pulmonary hypertension, inhaled nitric oxide does not impair left ventricular contractile function. Therefore the cause of pulmonary edema observed in some patients receiving inhaled nitric oxide is not due to a negative inotropic action of this therapy.  相似文献   

14.
BACKGROUND: Reperfusion injury is a significant cause of early allograft dysfunction after lung transplantation. We hypothesized that direct pulmonary arterial infusion of an intravascular nitric oxide donor, sodium nitroprusside (SNP), would ameliorate pulmonary reperfusion injury more effectively than inhaled nitric oxide without causing profound systemic hypotension. METHODS: Using an isolated, ventilated, whole-blood-perfused rabbit lung model, we studied the effects of both inhaled and intravascular nitric oxide during lung reperfusion. Group I (control) lungs (New Zealand White rabbits, 3 to 3.5 kg) were harvested en bloc, flushed with Euro-Collins solution, and then stored inflated for 18 hours at 4 degrees C. Lungs were then reperfused with whole blood and ventilated with 60% oxygen for 30 minutes. Groups II, III, and IV received pulmonary arterial infusions of SNP at 0.2, 1.0, and 5.0 micrograms.kg-1.min-1, respectively, whereas group V was ventilated with 60% oxygen and nitric oxide at 80 ppm during reperfusion. RESULTS: Pulmonary arterial infusions of SNP even at 0.2 microgram.kg-1.min-1 (group II) showed significant improvements in pulmonary artery pressure (31.35 +/- 0.8 versus 40.37 +/- 3.3 mm Hg; p < 0.05) and pulmonary vascular resistance (38,946 +/- 1,269 versus 52,727 +/- 3,421 dynes.s/cm-5; p < 0.05) when compared with control (group I) lungs after 30 minutes of reperfusion. Infusions of SNP at 1.0 microgram.kg-1.min-1 (group III) showed additional significant improvements in dynamic airway compliance (1.98 +/- 0.10 versus 1.46 +/- 0.02 mL/mm Hg; p < 0.05), venous-arterial oxygenation gradient (116.00 +/- 24.4 versus 34.43 +/- 2.5 mm Hg; p < 0.05), and wet-to-dry ratio (6.9 +/- 0.9 versus 9.1 +/- 2.2; p < 0.05) when compared with control (group I) lungs. Lungs that received inhaled nitric oxide at 80 ppm (group V) were significantly more compliant (1.82 +/- 0.13 versus 1.46 +/- 0.02 mL/mm Hg; p < 0.05) than control (group I) lungs. CONCLUSIONS: Pulmonary arterial infusion of low-dose SNP during lung reperfusion significantly improves pulmonary hemodynamics, oxygenation, compliance, and edema formation. These effects were achieved at doses of SNP that did not cause profound systemic hypotension. Direct intravascular infusion of SNP via pulmonary arterial catheters could potentially abate reperfusion injury immediately after allograft implantation.  相似文献   

15.
Chronic hypoxia produces pulmonary artery hypertension through vasoconstriction and structural remodeling of the pulmonary vascular bed. The present study was designed to test the effect of heparin administered via aerosol on the development of hypoxic pulmonary hypertension. Anesthetized, intubated, and mechanically ventilated guinea pigs received an aerosol of either 2 ml normal saline (hypoxic control, HC) or 4,500 units of heparin diluted in 2 ml normal saline via an ultrasonic nebulizer (hypoxic heparin, HH). After 24 h of recovery, the animals were placed in a hypoxic chamber (10% O2) for 10 days. Animals kept in room air served as normoxic controls (NC). Hypoxia increased mean pulmonary artery pressure from 11 +/- 1 (SEM) mm Hg in NC to 24 +/- 1 mm Hg in HC (p < 0.05). Pulmonary artery pressure was significantly lower in HH-treated animals (20 +/- 1 mm Hg, p < 0.05 versus HC) as was the total pulmonary vascular resistance (0.15 +/- 0.01 in HH versus 0.20 +/- 0.01 mm Hg/ml/min in HC, p < 0.05). There was no difference in cardiac output (146 +/- 12 in HH versus 126 +/- 7 ml/min in HC), hematocrit (57 +/- 2 in HH versus 56 +/- 2% in HC), partial thromboplastin time (30 +/- 2 in HH versus 32 +/- 3 s in HC), prothrombin time (46 +/- 1 in HH versus 48 +/- 4 s in HC) or room air arterial blood gas values after 10 days of hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The immediate effect on the pulmonary circulation of reoxygenation with either room air or 100% O2 was studied in newborn piglets. Hypoxemia was induced by ventilation with 8% O2 until base excess was <-20 mmol/L or mean arterial blood pressure was <20 mm Hg. Reoxygenation was performed with either room air (n = 9) or 100% O2 (n = 9). Mean pulmonary artery pressure increased during hypoxemia (p = 0.012). After 5 min of reoxygenation, pulmonary artery pressure increased further from 24 +/- 2 mm Hg at the end of hypoxemia to 35 +/- 3 mm Hg (p = 0.0077 versus baseline) in the room air group and from 27 +/- 3 mm Hg at the end of hypoxemia to 30 +/- 2 mm Hg (p = 0.011 versus baseline) in the O2 group (NS between groups). Pulmonary vascular resistance index increased (p = 0.0005) during hypoxemia. During early reoxygenation pulmonary vascular resistance index decreased rapidly to values comparable to baseline within 5 min of reoxygenation in both groups (NS between groups). Plasma endothelin-1 (ET-1) decreased during hypoxemia from 1.5 +/- 0.1 ng/L at baseline to 1.2 +/- 0.1 ng/L at the end of hypoxemia (p = 0.003). After 30 min of reoxygenation plasma ET-1 increased to 1.8 +/- 0.3 and 1.5 +/- 0.2 ng/L in the room air and O2 groups, respectively (p = 0.0077 in each group versus end hypoxemia; NS between groups). We conclude that hypoxemic pulmonary hypertension and plasma ET-1 normalizes as quickly when reoxygenation is performed with room air as with 100% O2 in this hypoxia model with newborn piglets.  相似文献   

17.
Inhaled nitric oxide (NO), at a concentration of 80 ppm, counters the increase in respiratory resistance (Rrs) induced by methacholine, but fails to prevent a reduction in lung compliance (Crs) in a rabbit model. This study reports the effects of 3, 30 and 300 ppm of inhaled NO. New Zealand White rabbits were intubated and mechanically ventilated with 30% oxygen during neurolept anaesthesia. Methacholine (3 mg.ml-1) was nebulized, with or without NO inhalation. Inhalation of 3 and 30 ppm NO had no effect on the induced bronchoconstriction, whereas 300 ppm fully blocked the increase in Rrs. The decrease in Crs due to methacholine was not countered by 3, 30 or 300 ppm NO. On the contrary, inhalation of 300 ppm NO in itself decreased Crs from 5.0 +/- 0.1 to 4.3 +/- 0.1 ml.cmH2O-1. Also, mean arterial pressure (60 +/- 7 to 54 +/- 5 mmHg), alveolar-arterial oxygen tension gradient (0.8 +/- 0.8 to 2.3 +/- 1.8 kPa) and methaemoglobin (0.5 +/- 0.2 to 1.5 +/- 0.5%) changed significantly on inhalation of NO 300 ppm prior to methacholine challenge. We conclude that 3 and 30 ppm NO inhalation does not alter methacholine-induced bronchoconstriction. Inhalation of 300 ppm NO blocks an increase in resistance but fails to counter the reduction in compliance due to methacholine. This suggests that the bronchodilating effects of NO in rabbits in vitro are confined to the large airways.  相似文献   

18.
BACKGROUND: The pharmacological effects of infusion of human brain natriuretic peptide (hBNP) in patients with severe congestive heart failure have not been characterized previously. METHODS AND RESULTS: Twenty patients with severe congestive heart failure were randomized in a double-blind, placebo-controlled, crossover trial to receive incremental 90-minute infusions of hBNP (0.003, 0.01, 0.03, and 0.1 microgram/kg per minute) or placebo on 2 consecutive days. At the highest completed dose of the hBNP, mean pulmonary artery pressure decreased from 38.3 +/- 1.6 to 25.9 +/- 1.7 mm Hg; mean pulmonary capillary wedge pressure decreased from 25.1 +/- 1.1 to 13.2 +/- 1.3 mm Hg; mean right atrial pressure decreased from 10.9 +/- 1 to 4.8 +/- 1.0 mm Hg; mean arterial pressure decreased from 85.2 +/- 2.0 to 74.9 +/- 1.7 mm Hg; and cardiac index increased from 2.0 +/- 0.1 to 2.5 +/- 0.1 L/min per square meter (all P < .01 versus placebo). Urine volume and urine sodium excretion increased significantly during hBNP infusion when compared with placebo infusion (90 +/- 38 versus 67 +/- 27 mL/h and 2.6 +/- 2.4 versus 1.4 +/- 1.2 mEq/h, respectively, both P < .05 versus placebo), whereas creatinine clearance and urinary potassium excretion did not change. CONCLUSIONS: Infusion of incremental doses of hBNP is associated with favorable hemodynamic and natriuretic effects in patients with severe congestive heart failure.  相似文献   

19.
PURPOSE: To determine whether the concentration of nitric oxide (NO) at the arterial wall is increased subsequent to the abrupt elevation of blood flow in resistance arteries. METHODS: Eight dogs underwent laparotomy with anesthesia, and their small bowels were exteriorized. NO concentration was measured with NO-specific electrodes (200-micro-tip diameter) at the outer wall of the mesenteric arteries. Flow was increased by occlusion of the adjacent mesenteric arteries. In four animals, flow and NO concentration were measured after the administration of Nomega-nitro-L-arginine-methyl ester (L-NAME) to inhibit NO production. RESULTS: As arterial flow was increased from a baseline of 5.4 +/- 1.3 ml/min to 10.9 +/- 1.8 ml/min (p = 0.001), NO electrode current was elevated in every animal. With repetition of the flow stimulus, the response tended to be attenuated. In the first experimental trial, NO electrode current measured at the arterial wall increased from 2.86 +/- 0.56 to 3.00 +/- 0.60 nA (p = 0.02). L-NAME (10 mg/kg intravenous) effectively inhibited NO synthase as indicated by the elevation of mean arterial pressure (11 +/- 1.7 mm Hg; p = 0.04). After administration of L-NAME, NO electrode current measured at the outer arterial wall fell 0.23 +/- 0.05 nA (p = 0.02). CONCLUSIONS: The data indicate that a doubling of blood flow in the canine mesenteric resistance arteries is associated with an increase in NO concentration of at least 100 nm at the outer arterial wall. This association is probably a substantial underestimation of the actual concentration because of the geometry of the electrode tip. To our knowledge, ours is the first report of direct in vivo measurement of flow-dependent NO release in resistance arteries.  相似文献   

20.
Simultaneous hemodynamic, ventilatory, and blood gas studies were performed in 16 men with congestive heart failure before and during infusion of sodium nitroferricyanide (nitroprusside). The cardiac index increased from 2.00+/-0.16 L/min/sq m (SE) to 2.38+/-0.14 L/min/sq m, and the total pulmonary and systemic peripheral resistances fell from 928+/-123 to 494+/-57 dynes sec cm-5 and from 2,208+/-210 to 1,558+/-121 dynes sec cm-5, respectively. Both systemic and pulmonary arterial decreased during infusion of sodium nitroferricyanide, and the mixed venous oxygen pressure increased. There was no change in total or alveolar ventilation, arterial carbon dioxide tension, pH, or base excess; however, the mean arterial oxygen pressure (PaO2) decreased from 74+/-3 mm Hg to 68+/-3 mm Hg and the venous admixture effect increased from 8+/-1% to 13+/-2%. We conclude that the decrease in PaO2 during infusion of sodium nitroferricyanide resulted from a worsening of the ventilation-perfusion relationships due to increased perfusion of underventilated pulmonary units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号