首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the crystal structure of the uncommon phase with k=0 in ZrV2Dx, 2.2<x<2.5, which is an intermediate between the hydrogen-disordered phase and two hydrogen superstructures, ZrV2D<2 with k=(1/2 1/2 1/2) and ZrV2D>2.7 with k=(001). This phase is a primary superstructure combining the features of the disordered phase and, depending on the hydrogen concentration, one or another superstructure with k≠0. Its lattice (translational symmetry) is the same as in the disordered phase, which is k=0. Simultaneously, the lattice sites (the hydrogen arrangement in them) are prototypes of the sites of the subsequent superstructure with k≠0. Specifically, each site of the primary superstructure with k=0 is a mix of the sites with different spatial orientation of the superstructure with k≠0. In this sense the primary superstructure can be considered as a ‘lattice liquid crystal’ whereas usual superstructure with k≠0 is a ‘lattice crystal’. In addition, we have determined the crystal structure of the ‘ordered’ phase with k=(001) in ZrV2D2.73. It is a transitional state between the primary superstructure and the regular superstructure with the same k.  相似文献   

2.
The phase relations and hydrogenation behavior of Sr(Al1−xMgx)2 alloys were studied. The pseudobinary C36-type Laves phase Sr(Al,Mg)2 was found as a structural intermediate between the Zintl phase and the C14 Laves phase. The single-phase regions for the Zintl phase, C36 phase and C14 phase, were determined to be x=0–0.10, 0.45–0.68 and 0.80–1, respectively. The Mg-substituted Zintl phase Sr(Al0.95Mg0.05)2 can be hydrogenated to Sr(Al,Mg)2H2 at about 473 K. However, the Sr(Al,Mg)2H2 directly decomposes into SrH2 and Sr(Al,Mg)4 starting at 513 K. When the temperature is 573 K, the C36 Laves phase Sr(Al0.5Mg0.5)2 can be hydrogenated into SrMgH4 and Al, while the C14 Laves phase Sr(Al0.1Mg0.9)2 is hydrogenated into SrMgH4, Mg17Al12 and Mg.  相似文献   

3.
It is shown that oxygen-stabilized compounds Zr3NiOx (x=0.4, 0.6, 0.8, 1.0) interact with hydrogen at ambient temperature and pressure forming saturated hydrides with a filled Re3B-type structure. The hydrogen storage capacity decreases with increasing oxygen content from 6.65 H/f.u. for Zr3NiO0.4 down to 5.58 H/f.u. for Zr3NiO1.0. A slight decrease of the crystal lattice parameters of the parent compounds and a substantial increase of these parameters for the saturated hydrides were observed with increasing oxygen content. The partial hydrogen-induced lattice expansion, ΔV/at. H, increases from 2.333 Å3 for Zr3NiO0.4H6.65 to 3.047 Å3 for Zr3NiO1.0H5.58. Joint Rietveld refinement using X-ray and neutron powder diffraction data showed a distribution of deuterium atoms on similar positions as in oxygen-free Zr3FeDx and Zr3CoDx. The oxygen atoms move during deuteration from the octahedral site to one trigonal bi-pyramidal and two tetragonal interstices that are fully occupied in the saturated deuterides jointly by deuterium and oxygen. After deuterium desorption the oxygen atoms fully return to the initial octahedral site.  相似文献   

4.
The TiCr2−xVx compounds with 0.0≤x≤1.2 series have been synthesised and characterised by X-ray powder diffraction. X-Ray qualitative and quantitative phase analysis has been carried out on the as-cast alloys using the Rietveld method. The refinements of the structure shows that the materials crystallise either in the hexagonal or in the cubic Laves phase type for low V contents. For x>0.6, the system is found of b.c.c.-type structure only. The pressure–composition–temperature (PCT) isotherms measured at 298 K show that the as-cast alloys absorb large amounts of hydrogen, from 4 to 5.2 H/f.u. The PCT diagrams reveal also the presence of a relatively flat plateau, and a large hysterisis effect, and correspondingly the hydride cannot be completely dehydrogenated.  相似文献   

5.
In this paper, phase constituent, hydrogen storage characteristics and electrochemical performances of composite TiCr1.8 + X wt.% LaNi5 alloys with different stoichiometry were investigated. X-ray diffraction (XRD) tests reveal that these alloys still remain Laves phase constituent despite the increase of LaNi5 content in alloys. Electrochemistry performance is improved whereas the maximum hydrogen storage capacity of pressure composition temperatures (PCT) test slightly decreases at the same time. One kind of alloy with capacity up to 55 mAh/g has been developed.  相似文献   

6.
A new ternary compound of composition LaMg2Ni has been found and investigated with respect to structure and hydrogenation properties. It crystallizes with the orthorhombic MgAl2Cu type structure (space group Cmcm, a=4.2266(6), b=10.303(1), c=8.360(1) Å; V=364.0(1) Å3; Z=4) and absorbs hydrogen near ambient conditions (<200 °C, <8 bar) thereby forming the quaternary metal hydride LaMg2NiH7. Neutron powder diffraction on the deuteride revealed a monoclinic distorted metal atom substructure (LaMg2NiD7: space group P21/c, a=13.9789(7), b=4.7026(2), c=16.0251(8) Å; β=125.240(3)°, V=860.39(8) Å3; Z=8) that contains two symmetry independent tetrahedral [NiD4]4− complexes with Ni–D bond lengths in the range 1.49–1.64 Å, and six Danions in tetrahedral metal configuration with bond distances in the ranges 1.82–2.65 Å (Mg) and 2.33–2.59 Å (La). The compound constitutes a link between metallic ‘interstitial’ hydrides and non-metallic ‘complex’ metal hydrides.  相似文献   

7.
Polycrystalline hydrogen storage alloys based on lanthanum (La) are commercially used as negative electrode materials for the nickel–metal hydride (Ni–MHx) batteries. In this paper, mechanical alloying (MA) was used to synthesize nanocrystalline LaNi4−xMn0.75Al0.25Cox (x=0, 0.25, 0.5, 0.75 and 1.0) hydrogen storage materials. XRD analysis showed that, after 30 h milling, the starting mixture of the elements decomposed into an amorphous phase. Following the annealing in high purity argon at 700 °C for 0.5 h, XRD confirmed the formation of the CaCu5-type structures with a crystallite sizes of about 25 nm. The nanocrystalline materials were used as negative electrodes for a Ni–MHx battery. Cobalt substituting nickel in LaNi4Mn0.75Al0.25 greatly improved the discharge capacity and cycle life of the LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacities up to 258 mA h g−1 (at 40 mA g−1 discharge current) were measured. Mechanical alloying is a suitable procedure to obtain LaNi5-type alloy powders for electrochemical energy storage.  相似文献   

8.
The effect of iron substitution on the electrochemical behaviour of LaNi3.55Mn0.4Al0.3Co0.75−xFex compounds (x=0, 0.15, 0.55) has been studied by chronopotentiometry and cyclic voltammetry techniques. The maximum capacity decreases linearly from 308 to 239 mAhg−1 when the iron content increases from 0 to 7.3 wt.% (x=0.55). This decrease can be explained by the corrosion of the alloy in the aqueous KOH electrolyte. In spite of this decrease and of the long time needed for the activation, a good stability of discharge capacity was observed in LaNi3.55Mn0.4Al0.3Co0.75−xFex compounds. The reversibility of the electrochemical redox reaction of LaNi3.55Mn0.4Al0.3Co0.75−xFex alloy electrodes has been observed in the alloys least rich in iron. The hydrogen diffusivity in LaNi3.55Mn0.4Al0.3Co0.75−xFex alloy electrodes decreases when increasing the iron content. The obtained values of the hydrogen diffusion coefficient DH, varies between 2.1×10−7 and 8.2×10−9 cm2 s−1 depending on the iron content of the electrode.  相似文献   

9.
The crystal structures and hydrogen absorption/desorption properties of the ZrMn0.85−xFe1+x alloys (x = 0, 0.2, 0.4) were investigated systematically. The pressure–composition (PC) isotherms and absorption kinetics were measured at 273–333 K by the volumetric method. Besides the crystal structure, the plateau pressure and the hydrogen intake capacity, this article also discussed the absorption kinetics, the pulverization resistance and the thermodynamic properties. XRD patterns revealed that ZrMn0.85Fe and ZrMn0.65Fe1.2 were formed as hexagonal C14 laves phase structure while ZrMn0.45Fe1.4 possessed cubic C15 laves phase structure. With the increase of Fe and decrease of Mn, the plateau pressure increased while the hydrogen intake capacity lowered and the hydrogen absorption kinetics degraded. On the other hand, the hysteresis alleviated, the pulverization resistance improved and the stability of the hydrides decreased. The decomposition pressure was increased to more than 160 times for ZrMn0.85Fe and more than 2500 times for ZrMn0.65Fe1.2 compared with that of the ZrMn2 alloy.  相似文献   

10.
The crystallographic and the Curie temperature of the Sm2Fe17−xCrxC2 (x=0.5, 1, 1.5 and 2) carbides have been extensively studied. X-ray diffraction studies have shown that all these alloys are approximately single phases corresponding to the Th2Zn17 type rhombohedral structure with a small amount of -Fe. The amount of this residual -Fe phase decreases with increasing the Cr atomic content. It decreases from 1 wt% for x=0.5 to 0.4 wt.% for x=2. The lattice parameter c increases as a function of the Cr atomic content x from x=0 to x=1.5 and then decreases. This is due to the Cr atoms which prefer to substitute the Fe atoms in the 6c sites located along the c-axis. The lattice parameter a and the unit-cell volume decrease in all substitution ranges. The insertion of the C atoms leads essentially to an increase of the distances between the 9d and 18h sites and the 9d–18f sites. The Curie temperature reaches a maximum value of 583 K for x=1.5 and then decreases to 551 K for x=2. The enhancement of the Tc for lower Cr contents is due to a lowering of the hybridization of the iron atoms with their neighbors, the magnetovolume effect and the reduction of antiferromagnetic interactions. However, the decrease in Tc for higher Cr content is due to the reduction in the number of Fe–Fe pairs due to the magnetic dilution effect. For given interatomic distances, the exchange coupling of the Cr–Cr atoms is not of antiferromagnetic type and the exchange integral of the Cr–Cr pair is higher than that of the Fe–Fe pair.  相似文献   

11.
Investigations were made by neutron diffraction on Zr6CoAs2-type (space group no. 189) Ho6−xErxMnBi2 solid solutions. The ferromagnetic ordering temperature decreases from Ho6MnBi2 (TC = 200(6) K) to Er6MnBi2 (TC = 100(4) K), whereas temperatures of ferrimagnetic (or antiferrimagnetic) ordering (TFerri and TAFerri) are found to have non-monotonic dependences on the content of Er: TFerri = 58(4) K for Ho6MnBi2, TFerri = 162(4) K for Ho4.5Er1.5MnBi2, TFerri = 150(4) K for Ho3Er3MnBi2, TAFerri = 78(4) K for Ho1.5Er4.5MnBi2 and TAFerri = 52(4) K for Er6MnBi2.

In these compounds, no local moment was detected on the manganese ion site, except for Ho1.5Er4.5MnBi2 and Er6MnBi2 compounds. The manganese magnetic moments (μMn) is 1.5μB and these are antiferromagnetically coupled with that of rare earth moments.  相似文献   


12.
Mg6Ir2H11 has been synthesised by both hydrogenation of the intermetallic compound Mg3Ir at 20 bar and 300 °C, and sintering of the elements at 500 °C under 50 bar hydrogen pressure. Neutron powder diffraction on the deuteride indicates a monoclinic structure (space group P21/c, Mg6Ir2D11: a=10.226(1), b=19.234(2), c=8.3345(9) Å, β=91.00(1)°, T=20 °C) that is closely related to orthorhombic Mg6Co2H11. It contains a square-pyramidal [IrH5]4− complex and three saddle-like [IrH4]5− complexes of which one is ordered and two are disordered. Five hydride anions H are exclusively bonded to magnesium. The compound has a red colour, is presumably non-metallic and decomposes under 3 bar argon at 500 °C into Mg3Ir, iridium and a previously unreported intermetallic compound of composition Mg5Ir2.  相似文献   

13.
Investigations of phase relations in the Ba-rich part of the In2O3–BaO(CO2)–CuO pseudo-ternary system at 900 °C have revealed the existence of new indium–copper oxycarbonate – Ba4In0.8Cu1.6(CO3)0.6O6.2. Rietveld refinement of the X-ray powder diffraction data combined with infrared studies gives evidence that this phase is a oxycarbonate crystallising in the tetragonal structure (space group I4/mmm) with unit cell parameters: a=4.0349(1) Å and c=29.8408(15) Å. In the binary part of the In2O3–BaO(CO2) system we have identified the occurrence of Ba4In2−x(CO3)1+xO6−2.5x oxycarbonate solid solution showing a crystal structure also described by I4/mmm space group, but with the unit cell parameters: a=4.1669(1) Å and c=29.3841(11) Å for x=1. The existence range of this phase, −0.153<x<0.4, includes chemical compositions of earlier found phases: Ba5In2+xO8+0.5x with 0≤x≤0.45 (known as the -solid solution), as well as the binary Ba4In2O7 phase. The crystal structures of both new oxycarbonates are isomorphic and related to n=3 member of the Ruddlesden–Popper family.  相似文献   

14.
Nearly dual-phase Mg–Ni alloy fabricated by ingot metallurgy (IM) and comprising 30 vol% Mg2Ni and 61 vol% MgNi2 intermetallic compounds (remaining 9 vol% of unreacted Mg) was mechanically (ball) milled under controlled shearing for 10, 30, 70 and 100 h. The majority of the medium- and small-sized powder particles exhibited a relatively homogeneous microstructure of milled Mg2Ni and MgNi2. A fraction of large-sized particles developed the ‘core and mantel’ microstructure after milling for 70 and 100 h. The ‘core’ contains poorly milled MgNi2 particles and the ‘mantel’ is a thoroughly milled mixture of Mg2Ni, MgNi2 and, possibly, residual Mg. X-ray diffraction provides evidence of nanostructurization and eventual amorphization of a fraction of a heavily ball milled Mg2Ni phase. The remnant Mg2Ni developed a nanocrystalline/submicrocrystalline structure. The co-existing MgNi2 phase developed a submicrocrystalline structure within the powder particles. The results are rationalized in terms of enthalpy effects by the application of Miedema’s semi-empirical model to the phase changes in ball milled intermetallics.  相似文献   

15.
High-resolution neutron powder diffraction data have been collected on deuterated and dried samples of the perovskite BaZr0.5In0.5O2.75 at 5 K and room temperature, respectively. Inspection of Fourier nuclear density maps for the deuterated phase have allowed the deuteron position to be refined on a 12h (1/2, y, 0) crystallographic site, with y = 0.217(4) yielding a chemically reasonable OD distance of 0.92(2) Å. Evidence for anisotropy of the deuteron position is also found consistent with a 24k crystallographic site (0.56, 0.21, 0) indicative of displacements of the ion towards neighbouring oxygen ions. The presence of static oxygen disorder in both the dried and deuterated samples is apparent from the structural analyses. Raman spectra confirm short range deviations from cubic symmetry for both dried and hydrated samples.  相似文献   

16.
Simple ternary alloys with formula TixZr7−xNi10 (x between 0 and 2.5) were studied as a potential replacement for Laves phase alloys used in the negative electrodes of nickel metal hydride batteries. The samples were prepared by arc-melting and were not annealed. The samples retained a high degree of disorder, which contributed positively to activation and other electrochemical properties. Before hydrogenation, the alloys have a Zr7Ni10 orthorhombic structure mixed with some C15 and ZrO2 secondary phases. The amount of C15 secondary phase is important to the bulk diffusion of hydrogen and the surface electrochemical kinetics. That is, the diffusion coefficient and the exchange current both increase in the presence of C15 secondary phase. The proportion of C15 secondary phase is controllable by stoichiometry design. For instance, a slightly higher Zr content reduces the C15 content. Further, as the titanium substitution level increases: (1) the lattice constants decrease; (2) the PCT plateau pressure increases; (3) activation becomes easier; and (4) the high rate dischargeability improves.  相似文献   

17.
X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu2Cd1−zMnzSnSe4 and Cu2Cd1−zFezSnSe4 alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu2Cd0.8Fe0.2SnSe4 as well as for Cu2Cd0.2Fe0.8SnSe4 the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter σ decreases as Cd is replaced by either Mn and/or Fe. For the Cu2Cd1−zMnzSnSe4 and Cu2Cd1−zFezSnSe4 alloy systems, only two single solid phase fields, the tetragonal stannite α and the wurtz–stannite δ (Pmn21) structures were found to occur in the diagram. In addition to the tetragonal stannite α phase extra X-ray diffraction lines due to MnSe and/or FeSe2 were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.  相似文献   

18.
Measurements of the high field magnetization of CrTe1−xSbx (0.0≤x≤1.0) were carried out at 4.2 K in pulsed magnetic fields up to 300 kOe. The temperature dependence of the magnetization of CrTe1−xSbx was measured in the temperature range from 4.2 K to 800 K. The magnetic phase diagram of CrTe1−xSbx (0.0≤x≤1.0) was determined, which is similar to the typical one for the mixed crystals of the layered antiferromagnetic and ferromagnetic compounds proposed by de Gennes.  相似文献   

19.
The magnetocrystalline anisotropy and magnetic structure of DyFe12−xMox (1.00≤x≤3.00) have been investigated in detail by X-ray diffraction, thermomagnetic analysis, AC magnetic susceptibility, singular point detection technique and angular-magnetization measurement. A magnetic phase diagram of DyFe12−xMox (1.00≤x≤3.00) has been proposed. At room temperature, all DyFe12−xMox compounds exhibit uniaxial anisotropy. At low temperature, a spin reorientation transition of axis-to-cone was observed for DyFe12−xMox compounds with low Mo concentration, x<2.00. The spin reorientation temperature decreases with increasing Mo concentration. For DyFe12−xMox compounds with high Mo concentration, magnetohistory effects were observed below 48 K.  相似文献   

20.
The effects of the combined substitution of Y and Ga on the crystallographic structure of Nd2−xYxFe17−yGay compounds with x = 0, 0.5, 1.0, 1.5 and y = 0, 1, 2, 3 have been investigated using X-ray and neutron powder diffractions. Rietveld refinements of the diffraction data indicate that all the samples crystallize in the rhombohedral Th2Zn17-type structure with only small amounts of alpha iron. It is found that the addition of Ga atoms lessens the decreasing rates of the a-axis and unit cell volume V on the Y content but almost does not affect the decreasing rates of the c-axis. However, the substitution of Y has a positive effect on the increasing rates of the a-axis and unit cell volume V on the Ga content but has a very slight effect on the increasing rate of the c-axis. The c/a ratio of Nd2−xYxFe17−yGay as a function of Ga content exhibits a different increase for different Y content owe to the combined effects of Y and Ga on the crystallographic structure. The substitution of Y is found to have little effect on the site occupancy of Ga in Nd2−xYxFe17−yGay. The combined effects of Y and Ga on the bond lengths and ASBL of Nd2−xYxFe17−yGay indicate that more bonds detrimental to ferromagnetic exchange can be modulated into the desirable ferromagnetic exchange distance range through suitable combined substitution, which provides a valuable way to improve the magnetic properties of rare earth-transition intermetallic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号