首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The poliovirus RNA-dependent RNA polymerase (3Dpol) shares a region of homology with all RNA polymerases, centered around the amino acid motif YGDD, which has been postulated to be involved in the catalytic activity of the enzyme. Using oligonucleotide site-directed mutagenesis, we substituted the tyrosine at this motif of the poliovirus RNA-dependent RNA polymerase with cysteine, histidine, isoleucine, methionine, phenylalanine, or serine. The enzymes were expressed in Escherichia coli, and in vitro enzyme activity was tested. The phenylalanine and methionine substitutions resulted in enzymes with activity equal to that of the wild-type enzyme. The cysteine substitution resulted in an enzyme with approximately 50% of the wild-type activity, while the serine substitution resulted in an enzyme with approximately 10% of the wild-type activity; the isoleucine and histidine substitutions resulted in background levels of enzyme activity. To assess the effects of the mutants in viral replication, the mutant polymerase genes were subcloned into the infectious cDNA clone of poliovirus. Transfection of poliovirus cDNA containing the phenylalanine mutation in 3Dpol gave rise to virus in all of the transfection trials, while cDNA containing the methionine mutation resulted in virus in only 3 of 40 transfections. Transfection of cDNAs containing the other substitutions at the tyrosine residue did not result in infectious virus. The recovered viruses demonstrated kinetics of replication similar to those of the wild-type virus, as measured by [3H]uridine incorporation at either 37 or 39 degrees C. RNA sequence analysis of the 3Dpol gene of both viruses demonstrated that the tyrosine-to-phenylalanine or tyrosine-to-methionine mutation was still present. No other differences in the 3Dpol gene between the wild-type and phenylalanine-containing virus were found. The virus containing the methionine mutation also contained two other nucleotide changes from the wild-type 3Dpol sequence; one resulted in a glutamic acid-to-aspartic acid change at amino acid 108 of the polymerase, and the other resulted in a C-to-T base change at nucleotide 6724, which did not result in an amino acid change. To confirm that the second amino acid mutation found in the 3Dpol gene of the methionine-substituted virus allowed for replication ability, a mutation corresponding to the glutamic acid-to-aspartic acid change was made in the polymerase containing the methionine substitution, and this double-mutant polymerase was expressed in E. coli. The double-mutant enzyme was as active as the wild-type enzyme under in vitro assay conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
3.
Photoaffinity labeling with [gamma-32P]8N3GTP (8-azidoguanosine triphosphate) was used to identify the guanine binding peptides of the GTT binding site within two types of glutamate dehydrogenase isoproteins (GDH I and GDH II) isolated from bovine brain. 8N3GTP, without photolysis, mimicked the inhibitory properties of GTP on GDH I and GDH II activities. Saturation of photoinsertion of GDH isoproteins revealed an apparent Kd of 8 microM (GDH I) and 24 microM (GDH II) for [gamma-32P]8N3GTP. Ion exchange and reversed-phase high-performance liquid chromatography (HPLC) were used to isolate photolabel-containing peptides generated with trypsin. This identified a portion of the guanine binding domain within the GTP binding site is the region containing the sequence I-S-G-A-S-E-X-D-I-V-H-S-A-L-A-Y-T-M E-R (GDH I) and I-S-G-A-S-E-X-D-I-V-H-S-G-L-A-Y-T-M-E-R (GDH II). The symbol X indicates a position for which no phenylthiohydantoin-amino acid could be assigned. The missing residue, however, can be designated as a photolabeled lysine since the sequences including the lysine residue in question have a complete identity with those of the other GDH species known. Also, trypsin was unable to cleave the photolabeled peptide at this site. Photolabeling of these peptides was prevented by the presence of GTP during photolysis, while other nucleotides could not reduce the amount of photoinsertion as effectively as GTP. These results demonstrate selectivity of the photoprobe for the GTP binding site and suggest that the peptide identified using the photoprobe is located in the GTP binding domain of the brain GDH isoproteins.  相似文献   

4.
We identified the residues that are important for the binding of alpha-dendrotoxin (alphaDTX) to Kv1 potassium channels on rat brain synaptosomal membranes, using a mutational approach based on site-directed mutagenesis and chemical synthesis. Twenty-six of its 59 residues were individually substituted by alanine. Substitutions of Lys5 and Leu9 decreased affinity more than 1000-fold, and substitutions of Arg3, Arg4, Leu6, and Ile8 by 5-30-fold. Substitution of Lys5 by norleucine or ornithine also greatly altered the binding properties of alphaDTX. All of these analogs displayed similar circular dichroism spectra as compared with the wild-type alphaDTX, indicating that none of these substitutions affect the overall conformation of the toxin. Substitutions of Ser38 and Arg46 also reduced the affinity of the toxin but, in addition, modified its dichroic properties, suggesting that these two residues play a structural role. The other residues were excluded from the recognition site because their substitutions caused no significant affinity change. Thus, the functional site of alphaDTX includes six major binding residues, all located in its N-terminal region, with Lys5 and Leu9 being the most important. Comparison of the functional site of alphaDTX with that of DTX-K, another dendrotoxin (Smith, L. A., Reid, P. F., Wang, F. C., Parcej, D. N., Schmidt, J. J., Olson, M. A., and Dolly, J. O. (1997) Biochemistry 36, 7690-7696), reveals that they only share the predominant lysine and probably a leucine residue; the additional functional residues differ from one toxin to the other. Comparison of the functional site of alphaDTX with those of structurally unrelated potassium channel-blocking toxins from venomous invertebrates revealed the common presence of a protruding key lysine with a close important hydrophobic residue (Leu, Tyr, or Phe) and few additional residues. Therefore, irrespective of their phylogenetic origin, all of these toxins may have undergone a functional convergence. The functional site of alphaDTX is topographically unrelated to the "antiprotease site" of the structurally analogous bovine pancreatic trypsin inhibitor.  相似文献   

5.
Poly(rC) binding protein 2 (PCBP2) forms a specific ribonucleoprotein (RNP) complex with the 5'-terminal sequences of poliovirus genomic RNA, as determined by electrophoretic mobility shift assay. Mutational analysis showed that binding requires the wild-type nucleotide sequence at positions 20-25. This sequence is predicted to localize to a specific stem-loop within a cloverleaf-like secondary structure element at the 5'-terminus of the viral RNA. Addition of purified poliovirus 3CD to the PCBP2/RNA binding reaction results in the formation of a ternary complex, whose electrophoretic mobility is further retarded. These properties are consistent with those described for the unidentified cellular protein in the RNP complex described by Andino et al. (Andino R, Rieckhof GE, Achacoso PL, Baltimore D, 1993, EMBO J 12:3587-3598). Dicistronic RNAs containing mutations in the 5' cloverleaf-like structure of poliovirus that abate PCBP2 binding show a decrease in RNA replication and translation of gene products directed by the poliovirus 5' noncoding region in vitro, suggesting that the interaction of PCBP2 with these sequences performs a dual role in the virus life cycle by facilitating both viral protein synthesis and initiation of viral RNA synthesis.  相似文献   

6.
7.
We previously observed that rhesus monkey lipoprotein(a) [Lp(a)], is lysine-binding defective (Lys-) and attributed this deficiency to the presence of Arg72 in the lysine-binding site (LBS) of kringle IV-10 of apolipoprotein(a) [apo(a)] [Scanu, A.M., Miles, L.A., Fless, G.M., Pfaffinger, D., Eisenbart, J., Jackson, E., Hoover-Plow, J.L., Brunck, T., & Plow, E.F. (1993) J. Clin. Invest. 91, 283-291]. We also identified human mutants having Arg72 instead of Trp72 (wild type) in the LBS of kringle IV-10 [Scanu, A M., Pfaffinger, D., lEE, J.C., & Hinman, J. (1994) Biochim. Biophys. Acta 1227, 41-45]. Unique to the human mutant phenotype were the very low levels of plasma Lp(a), suggesting structural differences between human and rhesus apo(a) and a possible divergent mode of Lp(a) assembly. In order to explore the possibility of a relationship between apo(a) LBS and Lp(a) assembly, we developed a novel method for isolating wild-type and mutant apo(a) phenotypes in a free form by subjecting each parent Lp(a) to mild reductive conditions using 2 mM dithioerythritol (DTE) and 100 mM of the lysine analogue, epsilon-aminocaproic acid (EACA). The application of this method to the study of wild-type and mutant apo(a) species showed that regardless of the source of Lp(a), i.e., positive lysine binding (Lys+) or negative lysine binding (Lys-), all of the isolated free apo(a)s were Lys+. Moreover, incubation of free apo(a)s with their autologous human or rhesus low-density lipoproteins (LDL) generated Lp(a) complexes which were structurally and functionally indistinguishable from their parent native Lp(a). In each instance, the reassembly process was inhibited by the presence of either EACA or proline. These two reagents had a minimal effect on either Lp(a) or reassembled Lp(a) [RLp(a)]. Free apo(a) bound to apoB100 of very low density lipoproteins (VLDL) to form a triglyceride-rich Lp(a). These results show that (1) both human and rhesus Lp(a) are amenable to dissassembly and reassembly, (2) the presence of Arg72 in the LBS of kringle IV-10 is not involved, at least directly, in this process, (3) its cleavage from apoB100 opens up in apo(a) a domain that is both EACA and proline sensitive and involved in Lp(a) assembly, and (4) the apoB100 of VLDL is also competent to bind apo(a). Our observations also suggest that the difference in plasma Lp(a) levels between the rhesus and the human mutant, both having Arg72 in the LBS of apo(a) kringle IV-10, is not related to the assembly process, but more likely to a divergence in production/secretion rates between the two apo(a) phenotypes.  相似文献   

8.
Poliovirus RNA replication requires the activities of a viral RNA-dependent RNA polymerase, 3Dpol, in conjunction with several additional viral and likely cellular proteins. The importance of both the 3A and 3B coding regions has been documented previously by genetic tests, and their biochemical activities have been the subject of several recent investigations. In this study, we examined the previously reported stimulation of 3D-catalyzed RNA synthesis by 3AB. We show that 3AB does not stimulate RNA synthesis on templates that are stably base paired to a primer, indicating that 3AB does not stabilize or otherwise activate 3Dpol for chain elongation. Similarly, it does not alter the kinetic parameters or binding affinities of 3D for substrates. In the absence of a primer, or in the presence of a primer that does not form a stable hybrid with the template, 3AB increases the utilization of 3'-hydroxyl termini as sites for chain elongation by 3D, and thereby stimulates RNA synthesis. 3AB may interact with and stabilize these sites and/or may recruit 3Dpol to the site, resulting in stimulation of the initiation of elongation events. We propose that this activity is required for stabilizing weak interactions that occur during nucleotidyl-protein-primed initiation events in the viral RNA replication complex.  相似文献   

9.
A new type of affinity cross-linking strategy has been developed in which His6-tagged proteins can be cross-linked to their binding partners in the presence of unmodified proteins (D. Fancy, K. Melcher, S. A. Johnston, and T. Kodadek, 1996, Chem. Biol. 3, 551-559). The chemistry involves the addition of Ni(II) to the His6 tag, followed by oxidation of the metal with a peracid. It is shown here that, in addition to the His6 tag, a tyrosine residue placed in close proximity to the metal-binding site can strongly stimulate the yield of cross-linked product. This finding has important practical implications in the use of the His6-Ni-based cross-linking reaction for the analysis of multiprotein complexes.  相似文献   

10.
The carboxyl-terminal three-fourths of the hepatitis C virus (HCV) NS3 protein has been shown to possess an RNA helicase activity, typical of members of the DEAD box family of RNA helicases. In addition, the NS3 protein contains four amino acid motifs conserved in DEAD box proteins. In order to inspect the roles of individual amino acid residues in the four conserved motifs (AXXXXGKS, DECH, TAT, and QRRGRTGR) of the NS3 protein, mutational analysis was used in this study. Thirteen mutant proteins were constructed, and their biochemical activities were examined. Lys1235 in the AXXXXGKS motif was important for basal nucleoside triphosphatase (NTPase) activity in the absence of polynucleotide cofactor. A serine in the X position of the DEXH motif disrupted the NTPase and RNA helicase activities. Alanine substitution at His1318 of the DEXH motif made the protein possess high NTPase activity. In addition, we now report inhibition of NTPase activity of NS3 by polynucleotide cofactor. Gln1486 was indispensable for the enzyme activity, and this residue represents a distinguishing feature between DEAD box and DEXH proteins. There are four Arg residues in the QRRGRTGR motif of the HCV NS3 protein, and the second, Arg1488, was important for RNA binding and enzyme activity, even though it is less well conserved than other Arg residues. Arg1490 and Arg1493 were essential for the enzymatic activity. As the various enzymatic activities were altered by mutation, the enzyme characteristics were also changed.  相似文献   

11.
mRNA analogues containing 4-thiouridine residues at selected sites were used to extend our analysis of photo-induced cross-links between mRNA and 16S RNA to cover the entire downstream range between positions +1 and +16 on the mRNA (position +1 is the 5'-base of the P-site codon). No tRNA-dependent cross-links were observed from positions +1, +2, +3 or +5. Position +4 on the mRNA was cross-linked in a tRNA-dependent manner to 16S RNA at a site between nucleotides ca 1402-1415 (most probably to the modified residue 1402), and this was absolutely specific for the +4 position. Similarly, the previously observed cross-link to nucleotide 1052 was absolutely specific for the +6 position. The previously observed cross-links from +7 to nucleotide 1395 and from +11 to 532 were however seen to a lesser extent with certain types of mRNA sequence from neighbouring positions (+6 to +10, and +10 to +13, respectively); no tRNA-dependent cross-links to other sites on 16S RNA were found from these positions, and no cross-linking was seen from positions +14 to +16. In each case the effect of a second cognate tRNA (at the ribosomal A-site) on the level of cross-linking was studied, and the specificity of each cross-link was confirmed by translocation experiments with elongation factor G, using appropriate mRNA analogues.  相似文献   

12.
The yeast mRNA capping enzyme is composed of 52 (alpha) and 80 kDa (beta) polypeptides, which are responsible for its mRNA guanylyltransferase and RNA 5'-triphosphatase activities, respectively. We isolated the gene encoding the alpha subunit (CEG1) and showed that CEG1 is essential for yeast cell growth [Shibagaki et al., (1992) J. Biol. Chem. 267, 9521-9528]. In this study, CEG1 was expressed in Escherichia coli and the alpha subunit protein was purified to near homogeneity. A [32P]GMP-bound tryptic peptide derived from the recombinant enzyme-[32P]GMP covalent reaction intermediate was converted to a [32P]phosphoryl-peptide through periodate oxidation followed by beta-elimination. Hydrolysis of the [32P]phosphoryl-peptide with alkali resulted in [32P]N epsilon-phospholysine as the only phosphoamino acid, indicating that GMP in the enzyme-GMP complex is bound to a lysine residue via a phosphoamide linkage. Microsequencing of the [32P]GMP-peptide showed that the GMP binding site was located in the region between amino acids 60 and 75, which contained an internal trypsin-resistant lysine at position 70. CEG1 was subjected to site-directed mutagenesis and the mutant proteins were expressed in E. coli. Substitution of His or Ile for Lys70 entirely abolished the enzyme-GMP formation activity, and this mutation was lethal to yeast in vivo, supporting the notion that the active site in the alpha subunit is located at Lys70. Replacement of Lys70 with Arg reduced the ability to form the enzyme-GMP complex; however, yeast cells bearing this allele were not viable. A series of mutations, including 8 amino acid replacements and 3 insertions, near the active site (Lys70-Thr-Asp-Gly motif) were also introduced and the mutant polypeptides were examined for catalytic activity in vitro as well as yeast cell viability in vivo. There was a good correlation between the in vitro and in vivo functions of the mutant proteins, except when Asp72 was replaced with Glu, which allowed formation of the enzyme-GMP complex but failed to support cell growth. The results with Lys70 to Arg and Asp72 to Glu substitutions indicated that guanylyltransfer to RNA and/or additional roles besides cap formation per se are impaired in these mutant proteins.  相似文献   

13.
The plum pox potyvirus (PPV) protein CI is an RNA helicase whose function in the viral life cycle is still unknown. The CI protein contains seven conserved sequence motifs typical of RNA helicases of the superfamily SF2. We have introduced several individual point mutations into the region coding for motif V of the PPV CI protein and expressed these proteins in Escherichia coli as maltose binding protein fusions. Mutations that abolished RNA helicase activity also disturbed NTP hydrolysis. No mutations affected the RNA binding capacity of the CI protein. These mutations were also introduced in the PPV genome making use of a full-length cDNA clone. Mutant viruses carrying CI proteins with reduced RNA helicase activity replicated very poorly in protoplasts and were unable to infect whole plants without rapid pseudoreversion to wild-type. These results indicate that motif V is involved in the NTP hydrolysis step required for potyvirus RNA helicase activity, and that this activity plays an essential role in virus RNA replication inside the infected cell.  相似文献   

14.
Poliovirus RNA-dependent RNA polymerase 3D and viral protein 3AB are both thought to be required for the initiation of RNA synthesis. These two proteins physically associate with each other and with viral RNA replication complexes found on virus-induced membranes in infected cells. An understanding of the interface between 3D and 3AB would provide a first step in visualizing the architecture of the multiprotein complex that is assembled during poliovirus infection to replicate and package the viral RNA genome. The identification of mutations in 3D that diminish 3D-3AB interactions without affecting other functions of 3D polymerase is needed to study the function of the 3D-3AB interaction in infected cells. We describe the use of the yeast two-hybrid system to isolate and characterize mutations in 3D polymerase that cause it to interact less efficiently with 3AB than wild-type polymerase. One mutation, a substitution of leucine for valine at position 391 (V391L), resulted in a 3AB-specific interaction defect in the two-hybrid system, causing a reduction in the interaction of 3D polymerase with 3AB but not with another viral protein or a host protein tested. In vitro, purified 3D-V391L polymerase bound to membrane-associated 3AB with reduced affinity. Poliovirus that contained the 3D-V391L mutation was temperature sensitive, displaying a pronounced conditional defect in RNA synthesis. We conclude that interaction between 3AB and 3D or 3D-containing polypeptides plays a role in RNA synthesis during poliovirus infection.  相似文献   

15.
The heat-labile enterotoxin from Escherichia coli (LT) is a member of the cholera toxin family. These and other members of the larger class of AB5 bacterial toxins act through catalyzing the ADP-ribosylation of various intracellular targets including Gs alpha. The A subunit is responsible for this covalent modification, while the B pentamer is involved in receptor recognition. We report here the crystal structure of an inactive single-site mutant of LT in which arginine 7 of the A subunit has been replaced by a lysine residue. The final model contains 103 residues for each of the five B subunits, 175 residues for the A1 subunit, and 41 residues for the A2 subunit. In this Arg7Lys structure the active site cleft within the A subunit is wider by approximately 1 A than is seen in the wild-type LT. Furthermore, a loop near the active site consisting of residues 47-56 is disordered in the Arg7Lys structure, even though the new lysine residue at position 7 assumes a position which virtually coincides with that of Arg7 in the wild-type structure. The displacement of residues 47-56 as seen in the mutant structure is proposed to be necessary for allowing NAD access to the active site of the wild-type LT. On the basis of the differences observed between the wild-type and Arg7Lys structures, we propose a model for a coordinated sequence of conformational changes required for full activation of LT upon reduction of disulfide bridge 187-199 and cleavage of the peptide loop between the two cysteines in the A subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
19.
The binding site for tat protein on TAR RNA has been defined in quantitative terms using an extensive series of mutations. The relative dissociation constants for the mutant TAR RNAs were measured using a dual-label competition filter binding assay in which 35S-labelled wild-type TAR RNA (K1) was competed against 3H-labelled mutant TAR RNA (K2). The error in the self-competition experiment was usually less than 10% (e.g. K2/K1 = 1.07 +/- 0.05, n = 19) and the experimental data accurately matched theoretical curves calculated with fitted dissociation constants. Mutations in U23, a critical residue in the U-rich "bulge" sequence, or in either of the two base-pairs immediately above the "bulge", G26.C39 and A27.U38 reduced that affinity by 8- to 20-fold. Significant contributions to tat binding affinity were also made by the base-pairs located immediately below the bulge. For example, mutation of A22.U40 to U.A reduced tat affinity 5-fold, and mutation of G21.C41 to C.G reduced tat affinity 4-fold. The binding of a series of peptides spanning the basic "arginine-rich" sequence of tat was examined using both filter-binding and gel mobility shift assays. Each of the peptides showed significantly reduced affinities for wild-type TAR RNA compared to the tat protein. The ADP-2 (residues 43 to 72), ADP-3 (residues 48 to 72) and ADP-5 (residues 49 to 86) peptides were unable to discriminate between wild-type TAR RNA and TAR RNA mutants with the same fidelity as the tat protein. For example, these peptides showed no more than 3-fold reductions in affinity relative to wild-type TAR RNA for the U23-->C mutation in the bulge, or G26.G39-->C.G mutation in the stem of TAR RNA. By contrast, the ADP-I (residues 37 to 72), ADP-4 (residues 32 to 62) and ADP-6 (residues 32 to 72) peptides, which each carry amino acid residues from the "core" region of the tat protein have binding specificities that more closely resemble the protein. The ADP-4 and ADP-6 peptides showed between 4- and 7-fold reductions in affinity for the U23-->C or G26.C39-->C.G mutations. The ADP-1 peptide most closely resembles the protein in its binding specificity and showed 9-fold and 14-fold reductions in affinity for the two mutants, respectively. Chemical-modification interference assays using diethylpyrocarbonate (DEPC) and ethylnitrosourea (ENU) were also used to compare the binding properties of the tat protein and the tat-derived peptides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The conserved residue Lys-34 in GroES was replaced by alanine and glutamic acid using site-directed mutagenesis. This residue is near the carboxy terminus of the mobile loop in GroES (residues 17-32) which becomes immobilized upon formation of the GroEL/GroES complex [Landry et al. (1993) Nature 364, 255-258]. Both charge neutralization (Lys-34-->Ala) and charge reversal (Lys-34-->Glu) at this position have little effect on the binding constant of GroES to GroEL, but they increase the enhancement by GroES of cooperativity in ATP hydrolysis by GroEL. This is reflected by a change in the Hill coefficient (at 10 mM K+) from 4.10 (+/- 0.22) in the presence of wild-type GroES to 5.17 (+/- 0.24) and 4.46 (+/- 0.14) in the presence of the GroES mutants Lys-34-->Ala and Lys-34-->Glu, respectively. The results are interpreted using the Monod-Wyman-Changeux (MWC) model for cooperativity [Monod et al. (1965) J. Mol. Biol. 12, 88-118]. They suggest that Lys-34 in GroES modulates the allosteric transition in GroEL by stabilizing a relaxed (R)-like state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号