首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have cloned and characterized the mouse cDNA of a third mammalian homolog of the Drosophila period gene and designated it mPer3. The mPER3 protein shows approximately 37% amino acid identity with mPER1 and mPER2 proteins. The three mammalian PER proteins share several regions of sequence homology, and each contains a protein dimerization PAS domain. mPer3 RNA levels oscillate in the suprachiasmatic nuclei (SCN) and eyes. In the SCN, mPer3 RNA levels are not acutely altered by light exposure at different times during subjective night. This contrasts with the acute induction by light of mPer1 and mPer2 RNA levels during early and late subjective night. mPer3 is widely expressed in tissues outside of brain. In liver, skeletal muscle, and testis, mPer RNAs exhibit prominent, synchronous circadian oscillations. The results highlight the differential light responses among the three mammalian Per genes in the SCN and raise the possibility of circadian oscillators in mammals outside of brain and retina.  相似文献   

2.
Molecular analysis of mammalian timeless   总被引:1,自引:0,他引:1  
We cloned the mouse cDNA of a mammalian homolog of the Drosophila timeless (tim) gene and designated it mTim. The mTim protein shows five homologous regions with Drosophila TIM. mTim is weakly expressed in the suprachiasmatic nuclei (SCN) but exhibits robust expression in the hypophyseal pars tuberalis (PT). mTim RNA levels do not oscillate in the SCN nor are they acutely altered by light exposure during subjective night. mTim RNA is expressed at low levels in several peripheral tissues, including eyes, and is heavily expressed in spleen and testis. Yeast two-hybrid assays revealed an array of interactions between the various mPER proteins but no mPER-mTIM interactions. The data suggest that PER-PER interactions have replaced the function of PER-TIM dimers in the molecular workings of the mammalian circadian clock.  相似文献   

3.
Circadian oscillations in period (per) mRNA and per protein (PER) constitute, in part, a feedback loop that is required for circadian pacemaker function in Drosophila melanogaster. Oscillations in PER are required for oscillations in per mRNA, but the converse has not been rigorously tested because of a lack of measurable quantities of per mRNA and protein in the same cells. This circadian feedback loop operates synchronously in many neuronal and non-neuronal tissues, including a set of lateral brain neurons (LNs) that mediate rhythms in locomotor activity, but whether a hierarchy among these tissues maintains this synchrony is not known. To determine whether per mRNA cycling is necessary for PER cycling and whether cyclic per gene expression is tissue autonomous, we have generated per01 flies carrying a transgene that constitutively expresses per mRNA specifically in photoreceptors, a cell type that supports feedback loop function. These transformants were tested for different aspects of feedback loop function including per mRNA cycling, PER cycling, and PER nuclear localization. Under both light/dark (LD) cycling and constant dark (DD) conditions, PER abundance cycles in the absence of circadian cycling of per mRNA. These results show that per mRNA cycling is not required for PER cycling and indicate that Drosophila photoreceptors R1-R6 contain a tissue autonomous circadian oscillator.  相似文献   

4.
5.
6.
A mouse gene, mper1, having all the properties expected of a circadian clock gene, was reported recently. This gene is expressed in a circadian pattern in the suprachiasmatic nucleus (SCN). mper1 maintains this pattern of circadian expression in constant darkness and can be entrained to a new light/dark cycle. Here we report the isolation of a second mammalian gene, mper2, which also has these properties and greater homology to Drosophila period. Expression of mper1 and mper2 is overlapping but asynchronous by 4 hr. mper1, unlike period and mper2, is expressed rapidly after exposure to light at CT22. It appears that mper1 is the pacemaker component which responds to light and thus mediates photic entrainment.  相似文献   

7.
8.
9.
10.
Cryptochromes are photoactive pigments in the eye that have been proposed to function as circadian photopigments. Mice lacking the cryptochrome 2 blue-light photoreceptor gene (mCry2) were tested for circadian clock-related functions. The mutant mice had a lower sensitivity to acute light induction of mPer1 in the suprachiasmatic nucleus (SCN) but exhibited normal circadian oscillations of mPer1 and mCry1 messenger RNA in the SCN. Behaviorally, the mutants had an intrinsic circadian period about 1 hour longer than normal and exhibited high-amplitude phase shifts in response to light pulses administered at circadian time 17. These data are consistent with the hypothesis that CRY2 protein modulates circadian responses in mice and suggest that cryptochromes have a role in circadian photoreception in mammals.  相似文献   

11.
Circadian functions of the suprachiasmatic nuclei (SCN) are influenced by cyclic AMP (cAMP). Adenylyl cyclase type II (AC-II) is a cAMP-generating enzyme which, in the context of activation by Gsalpha, is further stimulated by protein kinase C or G protein betagamma subunits. Using in situ hybridization we have found a biphasic variation in AC-II mRNA within the rat SCN during the light-dark cycle (peaks at Zeitgeber time 6 and 18) and also in constant darkness (peaks at circadian time 2 and 14). The cingulate cortex showed no such variation. These findings suggest that circadian changes in AC-II expression may be pertinent to the rhythmic functions of the SCN.  相似文献   

12.
13.
Converging lines of evidence have firmly established that the hypothalamic suprachiasmatic nucleus (SCN) is a light-entrainable circadian oscillator in mammals, critically important for the expression of behavioral and physiological circadian rhythms. Photic information essential for the daily phase resetting of the SCN circadian clock is conveyed directly to the SCN from retinal ganglion cells via the retinohypothalamic tract. The SCN also receives a dense serotonergic innervation arising from the mesencephalic raphe. The terminal fields of retinal and serotonergic afferents within the SCN are co-extensive, and serotonergic agonists can modify the response of the SCN circadian oscillator to light. However, the functional organization and subcellular localization of 5HT receptor subtypes in the SCN are just beginning to be clarified. This information is necessary to understand the role 5HT afferents play in modulating photic input to the SCN. In this paper, we review evidence suggesting that the serotonergic modulation of retinohypothalamic neurotransmission may be achieved via at least two different cellular mechanisms: 1) a postsynaptic mechanism mediated via 5HT1A or 5ht7 receptors located on SCN neurons; and 2) a presynaptic mechanism mediated via 5HT1B receptors located on retinal axon terminals in the SCN. Activation of either of these 5HT receptor mechanisms in the SCN by specific 5HT agonists inhibits the effects of light on circadian function. We hypothesize that 5HT modulation of photic input to the SCN may serve to set the gain of the SCN circadian system to light.  相似文献   

14.
A circadian pacemaker consists of at least three essential features: the ability to generate circadian oscillations, an output signal, and the ability to be entrained by external signals. In rodents, ablation of the suprachiasmatic nucleus (SCN) results in the loss of circadian rhythms in activity. Rhythmicity can be restored by transplanting fetal SCN into the brain of the lesioned animal, demonstrating the first two of the essential pacemaker features within the grafts. External signals, such as the light/dark cycle, have not, however, been shown to entrain the restored rhythms. Melatonin injections are an effective entraining stimulus in fetal and neonatal Syrian hamsters of the same developmental ages used to provide donor tissue for transplantation. Therefore, melatonin was used to test the hypothesis that SCN grafts contain an entrainable pacemaker. Daily injections of melatonin were given to SCN-lesioned hosts beginning on the day after transplantation of fetal SCN. Two groups that received melatonin at different times of day 12 hr apart each showed significantly clustered phases but with average phases that differed by 8.67 hr. Thus melatonin was able to entrain the restored circadian activity rhythms. In contrast to these initial injections, injections given 6 weeks after transplantation were unable to entrain or phase shift the rhythms. The results demonstrate that SCN grafts contain an entrainable circadian pacemaker. In addition, the results also indicate that the fetal SCN is directly sensitive to melatonin and, as with intact hamsters, sensitivity to melatonin is lost during SCN development.  相似文献   

15.
The suprachiasmatic nuclei (SCN) contain the principal circadian clock governing overt daily rhythms of physiology and behavior. The endogenous circadian cycle is entrained to the light/dark via direct glutamatergic retinal afferents to the SCN. To understand the molecular basis of entrainment, it is first necessary to define how rapidly the clock is reset by a light pulse. We used a two-pulse paradigm, in combination with cellular and behavioral analyses of SCN function, to explore the speed of resetting of the circadian oscillator in Syrian hamster and mouse. Analysis of c-fos induction and cAMP response element-binding protein phosphorylation in the retinorecipient SCN demonstrated that the SCN are able to resolve and respond to light pulses presented 1 or 2 hr apart. Analysis of the phase shifts of the circadian wheel-running activity rhythm of hamsters presented with single or double pulses demonstrated that resetting of the oscillator occurred within 2 hr. This was the case for both delaying and advancing phase shifts. Examination of delaying shifts in the mouse showed resetting within 2 hr and in addition showed that resetting is not completed within 1 hr of a light pulse. These results establish the temporal window within which to define the primary molecular mechanisms of circadian resetting in the mammal.  相似文献   

16.
The period (per) gene of Drosophila plays an important role in circadian clock function. Interestingly, homologs of per have not been cloned outside of dipteran species. Using a PCR strategy, we now report the cloning of the cDNA of a per homolog from the silkmoth Antheraea pernyi. The cDNA encodes a protein of 849 amino acids, which shows highest identity (39%) with the per protein of Drosophila virilis. Stretches of high identity between moth and fly proteins are in the amino terminus, the PAS region, and the region surrounding the site of the per mutation in Drosophila. Moth per homolog mRNA levels exhibit a prominent circadian variation in adult heads, and per protein antibodies show a pronounced variation of per antigen staining in photoreceptor nuclei. With sequence information derived from moth and flies, per-like cDNA fragments were readily cloned by PCR from other moth species and a third insect order.  相似文献   

17.
The timing of the preovulatory surge of LH in female rodents is tightly coupled to the environmental light/dark cycle. This coupling is mediated by the circadian pacemaker located in the suprachiasmatic nuclei (SCN). Studies indicate that vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP), which are synthesized in the SCN, transmit circadian information from the SCN to GnRH neurons, thereby regulating the timing of the LH surge. However, to date, the rhythmic expression of these two peptides in the SCN has only been examined in males. The pattern of VIP expression in males is difficult to reconcile with its role in the LH surge. The purpose of the present study was to assess the rhythm of VIP messenger RNA (mRNA) levels in the SCN of female rats under several endocrine conditions. We compared this rhythm to that in males and to AVP mRNA rhythms in all experimental groups. In all groups of females, VIP mRNA levels were rhythmic, with peak expression occurring during the light phase and a nadir occurring during the dark phase. The rhythm was approximately 12 h out of phase compared with that in males. The rhythmic expression of AVP mRNA in the SCN was virtually identical in all groups of animals. Based on these results, we conclude that 1) the rhythm of VIP seen in the SCN of females during the day may serve as a facilitory signal from the SCN to GnRH neurons; 2) the sex-specific pattern of VIP mRNA does not depend on estradiol; and 3) AVP gene expression within the SCN is not sexually differentiated or altered by estradiol.  相似文献   

18.
19.
The circadian rhythm genes period (per) and timeless (tim) are central to contemporary studies on Drosophila circadian rhythms. Mutations in these genes give rise to arrhythmic or period-altered phenotypes, and per and tim gene expression is under clock control. per and tim proteins (PER and TIM) also undergo circadian changes in level and phosphorylation state. The authors previously described a period-altering tim mutation, timSL, with allele-specific effects in different per backgrounds. This mutation also affected the TIM phosphorylation profile during the mid-late night. The authors show here that the single amino acid alteration in TIM-SL is indeed responsible for the phenotype, as a timSL transgene recapitulates the original mutant phenotype and shortens the period of perL flies by 3 h. The authors also show that this mutation has comparable effects in a light-dark cycle, as timSL also accelerates the activity offset during the mid-late night of perL flies. Importantly, timSL advances predominantly the mid-late night region of the perL phase response curve, consistent with the notion that this portion of the cycle is governed by unique rate-limiting steps. The authors propose that TIM and PER phosphorylation are normally rate determining during the mid-late night region of the circadian cycle.  相似文献   

20.
Examined the role of the suprachiasmatic nuclei (SCN) in nonphobic entrainment. The wheel-running activity of SCN-ablated hamsters was recorded in constant dark (DD) and then under prolonged schedules of 2-hr daily cage changes, restricted food availability, and daily light–dark (LD) cycles. Ss with very large lesions subsuming the SCN and surrounding areas exhibited significant, albeit unstable, circadian activity rhythms in DD. Some Ss with similar ablations also showed entrained rhythms to daily cage change schedules. Ss showed robust rhythms entrained to a daily feeding schedule. No Ss showed entrainment to LD cycles. Competent circadian oscillators evidently exist outside the SCN, at least 0.5 mm or more away, and at least some are nonphotically entrainable. Weaker entrainment in animals with larger lesions suggests that nonphotically entrainable oscillators also exist within the SCN or its immediate vicinity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号