首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石墨烯基复合超级电容器材料研究进展   总被引:1,自引:0,他引:1  
石墨烯基复合材料因其优异的性能广泛应用于各个领域,尤其在超级电容器的研究中。本文对石墨烯基复合超级电容器材料的结构进行了分类,并分别从石墨烯-碳基复合材料、石墨烯-导电高分子复合材料、石墨烯-过渡金属化合物复合材料的角度,总结了不同石墨烯基复合超级电容器材料的研究进展,重点强调了优化电极结构和提高电极性能之间的关系。同时,概述了石墨烯基复合材料在锂离子电池、太阳能电池、催化等其他方面的应用。获得高能量密度、功率密度以及长循环寿命的超级电容器是其作为电极材料的发展趋势。  相似文献   

2.
超级电容器是一种具有优异电化学性能的新型储能装置,文章介绍了超级电容器的储能机理和优点,论述了碳基材料、金属氧化物材料及导电聚合物材料的研究进展和作为超级电容器电极材料的要求,对未来的电极材料的研究方向作出了展望。  相似文献   

3.
超级电容器是一种高性能的能量存储设备,因具有高功率密度、快速的充放电速率、高安全性能、优异的循环稳定性和较宽的工作温度范围等优点备受人们关注和青睐,并在清洁能源、电动汽车、无线通信、航空航天、军事和消费电子等领域得到了广泛的应用。电极材料是决定超级电容器储能性能的关键因素之一,开发新型、高效电极材料的已成为国内外研究的热点。传统电极材料经过长期的发展虽取得了一些技术革新和突破,但仍存在碳基电极容量不大、过渡金属化合物导电性不高、导电聚合物循环稳定性不足等缺点。石墨烯是一种由单层碳原子构成的碳纳米材料,具有优异的物理化学性能,是超级电容器电极材料的新宠。三维石墨烯不仅能保留单层或少数层石墨烯独特的物理化学性质,而且具有低密度、多孔性、高度连通结构和微反应环境等特性,在超级电容器领域备受关注,比石墨烯具有更加广泛的应用前景。目前,三维石墨烯的制备方法主要有湿化学技术、CVD技术和3D打印技术等。其中,3D打印技术凭借其在空间构型设计和化学组成优化方面的独特优势,在生物医药和能源器件等领域迅速发展。基于3D打印的石墨烯基材料不仅具有良好的孔道分布和优异的力学性能,而且其独特的3D打印结构还能...  相似文献   

4.
石墨烯因其优异的物理、化学性能,自发现以来一直是研究的热点。介绍了石墨烯作为超级电容器电极材料的优势,简单阐述了超级电容器的分类和机理,重点分析了特殊结构石墨烯单质材料、石墨烯复合材料作为超级电容器电极材料的研究进展。  相似文献   

5.
滕柳梅 《材料导报》2016,30(Z1):197-200, 208
石墨烯因具有独特的二维晶体结构而具备优异的电学、光学、力学、热学等性能,成为全世界科研工作者研究的热点。介绍了超级电容器储能原理,对石墨烯在超级电容器中的应用和其复合电极材料的发展进行了综述和展望。  相似文献   

6.
近年来,便携式和可穿戴电子设备呈现出跨越式发展,为了使可穿戴电子器件更加灵活、轻巧、智能并完全实现产品化,就需进一步探求与之匹配的具有薄、轻、柔特点的储能装置。超级电容器由于具有功率密度高、循环寿命长、机械强度高、安全性好和易于组装等优点,受到研究者的广泛关注。然而,传统的超级电容器一旦受到外力发生变形,储能特性会极大降低甚至丧失。电极材料是电容器的核心部分,因此研制出高柔韧性和储能特性出众的电极材料是有必要的。石墨烯因具有大比表面积,优异的力学、电学性能而成为用于柔性超级电容器的有吸引力的电极材料。赝电容材料可提供高比电容,但其导电性差、稳定性低,因此研究者将石墨烯与赝电容材料相融合作为电极材料,充分发挥各自优势,不仅克服了石墨烯片层间易团聚的缺点,还可提高柔性超级电容器的整体能量密度。由于二维石墨烯片层易堆叠,电子传导能力受到限制,目前更多的研究工作致力于三维多孔网状结构的石墨烯材料。本文突出介绍了石墨烯的两个重要角色:(1)与电化学活性物质复合作为活性材料;(2)作为沉积活性物质的导电柔性基体。因此,功能多样化的石墨烯在制备柔性电极中有很大的潜力。通过化学沉积、浸涂、水热等工艺将具有高电导率的石墨烯直接作为柔性基底,或与赝电容材料键合附着在柔性基体上,制备基于石墨烯的柔性电极材料。本文介绍了超级电容器的储能原理和石墨烯在柔性超级电容器领域的应用状况,着重总结了石墨烯/过渡金属氧化物、石墨烯/导电聚合物复合电极材料在柔性超级电容器方面的研究进展;解析了柔性超级电容器电极材料仍然面临的挑战,并对其未来的发展进行了展望。  相似文献   

7.
李战  钱俊 《包装学报》2018,10(4):78-87
石墨烯基纳米复合材料是制备超级电容器电极的重要原料之一,也是当下的研究热点。首先介绍了石墨烯/导电聚合物、石墨烯/金属氧化物两类二元纳米复合材料的特点及其制备方法;再介绍了三种不同结构类型的石墨烯/导电聚合物/金属氧化物三元纳米复合材料,并通过分析其结构特点,说明其优势与不足;最后简要介绍了石墨烯与金属硫化物、贵金属粒子以及其他碳材料复合的研究现状。通过分析可知,目前石墨烯基纳米复合材料仍存在较多不足之处,寻求快速、绿色、经济的方法制备能有效提高超级电容器电化学性能的石墨烯基纳米复合材料,将是未来的发展方向。  相似文献   

8.
三维石墨烯网络(3DGNs)能够缩短电解质离子的扩散距离,提供快速电子输运通道,并能充当骨架以与赝电容材料进行复合,因而在超级电容器中得到了广泛应用。本文主要综述近年来三维石墨烯网络及其复合材料在超级电容器电极材料方面的的进展,论述提升三维石墨烯基超级电容器性能的途径,最后展望了未来三维石墨烯网络的前景。  相似文献   

9.
与传统能量存储设备相比,超级电容器因具备比电容高、充放电快、绿色环保并且循环稳定性能优异等优点,在移动通信、电动汽车、国防和航空航天领域具有广阔的应用前景,已成为世界范围内的研究焦点。其中,超级电容器的电极材料是其性能的决定因素,常见的超级电容器电极材料包括碳材料、过渡金属氧化物和导电聚合物等。不同的电极材料的电荷储存机理不同,过渡金属氧化物具有典型的赝电容行为,依赖可逆的氧化还原反应和化学吸附/脱附过程来储存电荷,理论比电容高。然而,过渡金属氧化物同时存在导电性能差,循环稳定性不佳的缺点。碳材料主要表现双电层电容特性,依靠材料表面和电解质离子间的可逆物理吸附/脱附过程储存电荷,具有优异的倍率性能,符合实际生产和应用中对于超级电容器器件高寿命的要求,但其自身比电容相对较低。与单一属性的材料相比,复合材料往往表现出更加优异的电化学性能,大量的研究表明,过渡金属氧化物与碳材料的复合是解决上述问题的有效途径。碳材料因具有来源丰富、价格低廉、质量轻盈、比表面积高以及热稳定性好与电化学性能稳定等优点,日益受到重视,是构建赝电容电容器电极的首选基底材料。碳材料结构多样,近年来,零维的碳量子点、碳球,一维的碳纳米管、碳纳米纤维,二维的石墨烯、氧化石墨烯,三维的石墨烯泡沫、碳泡沫/海绵等均被成功地用于构建碳基复合电极材料,并取得了丰硕的成果。零维碳纳米材料具有高比表面积,提供了调节多孔性的灵活度,可以获得适合各自电解质溶液的最优化条件。一维碳纳米结构一般具有高长宽比和良好的电子传输性能,可以促进超级电容器电极的电荷转移。二维碳纳米结构具有比表面积大与导电性高、力学性能优良等特点,具备潜在赝电容行为,并且能增强超级电容器电极间的充放电反应动力学。利用三维导电材料作为模板,沉淀赝电容材料,可以构建高性能超级电容器电极。本文概述了不同维度碳材料负载过渡金属氧化物作为赝电容的电极材料及其电容性能,并对电极材料储能方面存在的不足和未来的研究方向做出了总结和展望,以期为制备性能优良、环境友好和高寿命的超级电容器提供参考。  相似文献   

10.
三维石墨烯具有独特的三维多孔结构,不仅增加了与电解液的接触面积,同时为固定在其表面的活性物质提供了快速的电子传输通道,有效地提高了超级电容器的电化学性能,使其被认为是最有前景的超级电容器电极材料。综述了目前获得多孔结构、大比表面积、优异导电性和良好力学性能的三维石墨烯的方法,并简述了其复合材料在超级电容器领域的应用现状。  相似文献   

11.
电工所高性能石墨烯基超级电容器研究中取得进展   总被引:1,自引:0,他引:1  
正超级电容器作为新型储能器件,具有功率密度高、充电时间短、使用寿命长等优点,但其能量密度一直受限于电极材料的性能。中科院电工研究所马衍伟课题组通过金属镁热还原二氧化碳气体,成功制备出富含孔道结构的石墨烯电极材料。基于此石墨烯研制的超级电容器,在水系和有机电解液中表现出优异的功率特性和循环寿命,在功率密度为1kW/kg的时候,能量密度高达80Wh/kg,远高于目前商业化活性炭基  相似文献   

12.
随着便携式和可穿戴电子产品的发展,人们对柔性储能设备的需求越来越迫切。常用的储能设备有锂离子电池、超级电容器等。与锂离子电池相比,超级电容器具有更快的充放电速度、更高的循环稳定性能和更大的比电容等优点。但传统的超级电容器在受到拉伸、压缩等外力作用时,存储功能难免下降甚至丧失。因此,可拉伸超级电容器引起了研究者们的关注。电极是可拉伸超级电容器的重要组成部分,人们通过制备性能优异的电极材料或设计能够抗压缩、拉伸、扭曲等高强度机械力的电极结构来提高电极的电化学性能和力学性能。碳纳米管、石墨烯、碳纤维和碳气凝胶等碳材料属于双电层电容器电极材料,它们虽然比表面积大、循环稳定性强,但仍存在低比电容、低能量密度等缺点。其中,石墨烯更是面临因堆叠团聚而导致的储能性能降低的问题。于是,人们在将碳材料与其他电极材料结合制备碳基可拉伸复合电极材料方面做了许多尝试。高比电容的赝电容电极材料、大比表面积的过渡金属硫化物或高导电性的金属纳米线,都已被发现能够与某些碳材料产生协同互补,形成的碳基复合电极在比电容、循环稳定性和力学性能方面相比单种碳电极材料有明显提高。本文在对比介绍用作可拉伸超级电容器的各种碳材料的优势与不足的基础上,综述了近年来广泛应用于可拉伸超级电容器的碳基复合电极材料的研究进展。  相似文献   

13.
王赫  王洪杰  王闻宇  金欣  林童 《材料导报》2018,32(5):730-734, 748
超级电容器是一种介于电池和传统物理电容器之间的新型环保储能器件,近年来得到了研究者的广泛关注。电极材料是超级电容器的核心部分,因此具有更高的研究价值。聚丙烯腈基碳纳米纤维因具有良好的静电纺丝性、较高的碳化产率、优异的纳米结构、超高的比表面积以及优良的导电性和稳定性,已经成为超级电容器电极材料的研究热点。本文主要介绍了聚丙烯腈基交联结构和多孔结构碳纳米纤维电极材料,元素掺杂电极材料以及与碳材料、导电聚合物、金属氧化物复合的电极材料,并对聚丙烯腈基碳纳米纤维电极材料未来的研究方向进行了展望。  相似文献   

14.
近年来,超级电容器以其优异的性能引起了研究者的广泛兴趣。其中以石墨烯为基质的电极材料占研究的绝大部分,同时质子化的聚苯胺也是一种高比电容的电极材料,将石墨烯与聚苯胺复合,利用二者的协同作用可以有效提高电容器的性能。主要介绍了二者的复合方式及复合材料的电容性能,总结了石墨烯/聚苯胺电极材料电容器的研究进展,最后对该领域的发展进行了展望。  相似文献   

15.
具有独特二维纳米结构的石墨烯可为电子转移提供通道,使其复合材料具有优良的电容性能。聚吡咯(PPy)因具有超电容性能、聚合电位低和空气稳定性好等优点,常作为理想型电极材料。综述了原位化学氧化聚合法和电化学沉积法2种石墨烯/PPy复合材料的制备方法,以及石墨烯/PPy复合材料在超级电容器、微波吸收、燃料电池催化剂和传感器等电化学方面的应用现状,并展望了石墨烯/PPy复合材料的未来发展方向。  相似文献   

16.
超级电容器是一种介于传统静电容器和化学电池之间的新型储能元件,具有功率密度大、充放电速度快、使用寿命长、绿色环保等特点。而作为超级电容器重要的组成部分——电极材料,对超级电容器的电化学性能和市场应用起到重要的影响和制约。近年来,以碳气凝胶、碳纳米管、碳纤维和石墨烯等为代表的新型碳材料,成为超级电容器电极材料的研究热点,有望成为新一代电极材料。对近年来国内外关于新型碳材料的应用与发展进行了综述,并且展望了新型碳材料在超级电容器储能技术中亟需解决的问题和未来发展趋势,为构建能源互联网提供理论依据和技术支持。  相似文献   

17.
生物质基碳材料具有可再生性和灵活的微观结构可调性,作为高效、廉价的超级电容器电极材料受到越来越多的关注,但原生生物质衍生炭存在有低孔隙率、低比表面积和比电容不足等缺点。电极材料的比表面积、孔隙结构和导电性等都会影响超级电容器的储能性能,故如何制造具有高比电容、快速充放电且兼具一定柔性的电极材料成为了目前的研究重点。综述了超级电容器的类别、储能机理以及生物质基碳材料的制备方法和研究现状,分析了高质量负载电极的关键性能评价参数,并对其电化学性能影响因素进行了系统讨论,未来的发展趋势是将不同种类的储能器械集成复合型能源存储器械,以满足各领域需求。复合型的能源存储器械,大大提高了超级电容器的综合性能,因此研发高效、稳定的电能存储技术对于缓解能源短缺、减少环境污染和推动可持续发展具有重要的意义。  相似文献   

18.
石墨烯具有独特的二维空间网络结构及优异的导电性能、机械性能及超大的比表面积,是超级电容器中的双层电容器的理想电极材料,但石墨烯存在着容易团聚导致其可利用的活性表面减少及导电率和电容量降低的问题。近几年通过与N、B、P杂原子掺杂、碳纳米管复合及与法拉第赝电容电极材料进行互补性复合等方法对存在的问题进行了研究并取得了较好的效果,对这方面的研究进行了综述并指出了今后的研究及发展方向。  相似文献   

19.
工业的迅速发展创造了新的能源需求,超级电容器因其具有全面代替传统电池的潜力已对新能源领域产生了极大的推动力,成为当下的研究热点。目前,研究的焦点集中于如何提高超级电容器的能量密度这一关键瓶颈问题。在制备可提高电极比容量的新型电极材料的过程中,MnCo2O4作为一种赝电容超级电容器电极材料,因具有成本低、比容量高、电化学性能优异等特点而被深度研究。综述了当前阶段MnCo2O4电极材料的多种制备方法及MnCo2O4基复合电极材料在实际应用中的相关进展,并对MnCo2O4基复合电极材料的可能未来进行了展望。  相似文献   

20.
石墨烯独特的结构使其具有优异的电、光、热、强度等物理性质,是"后硅时代"的新潜力材料,因具有巨大的应用前景而成为研究的热点。首先对近10多年来国内外石墨烯的研究现状进行了简要分析,然后详细介绍了石墨烯的主要制备方法、原理、各自的特征及其应用前景,重点综述了石墨烯在超级电容器电极材料中的应用研究,最后就目前石墨烯及其在超级电容器中的应用研究的关键问题提出了个人看法和一些建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号