首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greater Cincinnati Water Works (GCWW) evaluated the efficacy of ultraviolet light/hydrogen peroxide advanced oxidation (UV/H2O2) for reducing trace organic contaminants in natural water with varying water qualities. A year-long UV/H2O2 pilot study was conducted to examine a variety of seasonal and granular activated carbon (GAC) breakthrough conditions. The UV pilot-scale reactors were set to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for by-product formation. Because hydroxyl radicals react non-selectively with organic compounds, unintended by-product formation occurred.Total assimilable organic carbon (AOC) concentration increased through the reactors from 14 to 33% on average, depending on water quality. Natural organic matter (NOM) contains the precursors for AOC production, so when post-GAC water (versus conventionally treated water) served as reactor influent, less AOC was produced. No appreciable difference in AOC concentration was observed between LP and MP UV reactors. The Spirillum strain NOX fraction of the AOC increased from 50 to 65% on average, depending on the quality of the water. The increase in this fraction of AOC occurred because oxidation of NOM yielded smaller more assimilable organic compounds such as organic acids that are necessary for NOX growth. The Pseudomonas fluorescens strain P17 AOC concentration increased only when conventionally treated plant water was used as pilot influent. This organism thrives in waters of differing organic energy sources, but does not thrive well in carboxylic acids alone. The CONV water had more overall TOC that could contribute to higher P17 AOC counts.Biofilm coupon studies indicated that biofilms with greater heterotrophic plate counts were observed in the granular activated carbon (GAC) effluent streams receiving UV/H2O2 pre-treatment. Biofilm coupon studies additionally indicated that the effluent stream of the GAC column proceeded by the MP reactor exhibited more viable biofilm than the other GAC effluent streams based on an ATP-bioluminescence method. The increased viability of the biofilm produced by the MP UV reactor is likely a result of the multiple UV wavelengths and higher energy input characteristic of this technology.  相似文献   

2.
Liu K  Roddick FA  Fan L 《Water research》2012,46(10):3229-3239
While reverse osmosis (RO) technology is playing an increasingly important role in the reclamation of municipal wastewater, safe disposal of the resulting RO concentrate (ROC), which can have high levels of effluent organic pollutants, remains a challenge to the water industry. The potential of UVC/H2O2 treatment for degrading the organic pollutants and increasing their biodegradability has been demonstrated in several studies, and in this work the impact of the water quality variables pH, salinity and initial organic concentration on the UVC/H2O2 (3 mM) treatment of a municipal ROC was investigated. The reduction in chemical oxygen demand and dissolved organic carbon was markedly faster and greater under acidic conditions, and the treatment performance was apparently not affected by salinity as increasing the ROC salinity 4-fold had only minimal impact on organics reduction. The biodegradability of the ROC (as indicated by biodegradable dissolved organic carbon (BDOC) level) was at least doubled after 2 h UVC/H2O2 treatment under various reaction conditions. However, the production of biodegradable intermediates was limited after 30 min treatment, which was associated with the depletion of the conjugated compounds. Overall, more than 80% of the DOC was removed after 2 h UVC/3 mM H2O2 treatment followed by biological treatment (BDOC test) for the ROC at pH 4-8.5 and electrical conductivity up to 11.16 mS/cm. However, shorter UV irradiation time gave markedly higher energy efficiency (e.g., EE/O 50 kWh/m3 at 30 min (63% DOC removal) cf. 112 kWh/m3 at 2 h). No toxicity was detected for the treated ROC using Microtox® tests. Although the trihalomethane formation potential increased after the UVC/H2O2 treatment, it was reduced to below that of the raw ROC after the biological treatment.  相似文献   

3.
Siva Sarathy 《Water research》2010,44(14):4087-6140
The advanced oxidation process utilizing ultraviolet and hydrogen peroxide (UV/H2O2) is currently applied in commercial drinking water applications for the removal of various organic pollutants. Natural organic matter (NOM) present in the source water can also be oxidized and undergo changes at the fluence and H2O2 concentrations applied in commercial drinking water UV/H2O2 applications (fluences less than 2000 mJ cm−2, initial H2O2 concentrations less than 15 mg L−1). In this study, the impact of UV/H2O2 on NOM’s aromaticity, hydrophobicity, and potential to form trihalomethanes (THMs) and haloacetic acids (HAAs) was investigated for raw surface water and the same water with the very hydrophobic acid (VHA) fraction of NOM removed. During UV/H2O2 treatments, NOM in the raw surface water was partially oxidized to less aromatic and hydrophobic characteristics, but was not mineralized, confirming findings from past research. Below fluences of 1500 mJ cm−2 UV/H2O2 treatment of the raw water did not lead to reduction in the formation potential of THMs. The formation potential of HAAs was reduced at a fluence of 500 mJ cm−2 with only small additional reductions as fluence further increased. For the water from which the VHA fraction was removed, UV/H2O2 treatment led to mineralization of NOM suggesting that, when coupled with a pre-treatment capable of removing the VHA fraction, UV/H2O2 could achieve further reductions in NOM. These subsequent reductions in NOM led to continuous reductions in the formation potentials of THMs and HAAs as fluence increased.  相似文献   

4.
Lamsal R  Walsh ME  Gagnon GA 《Water research》2011,45(10):3263-3269
This study examined the impact of UV, ozone (O3), advanced oxidation processes (AOPs) including O3/UV, H2O2/UV H2O2/O3 in the change of molecular weight distribution (MWD) and disinfection by-product formation potential (DBPFP). Bench-scale experiments were conducted with surface river water and changes in the UV absorbance at 254 nm (UV254), total organic carbon (TOC), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP) and MWD of the raw and oxidized water were analyzed to evaluate treatment performance. Combination of O3 and UV with H2O2 was found to result in more TOC and UV254 reduction than the individual processes. The O3/UV process was found to be the most effective AOP for NOM reduction, with TOC and UV254 reduced by 31 and 88%, respectively. Application of O3/UV and H2O2/UV treatments to the source waters organics with 190-1500 Da molecular weight resulted in the near complete alteration of the molecular weight of NOM from >900 Da to <300 Da H2O2/UV was found to be the most effective treatment for the reduction of THM and HAA formation under uniform formation conditions. These results could hold particular significance for drinking water utilities with low alkalinity source waters that are investigating AOPs, as there are limited published studies that have evaluated the treatment efficacy of five different oxidation processes in parallel.  相似文献   

5.
The objective of this study was to evaluate the necessity of measuring both assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC) as indicators of bacterial regrowth potential. AOC and BDOC have often been measured separately as indicators of bacterial regrowth, or together as indicators of bacterial regrowth and disinfection by-product formation potential, respectively. However, this study proposes that both AOC and BDOC should be used as complementary measurements of bacterial regrowth potential. In monitoring of full-scale membrane filtration, it was determined that nanofiltration (NF) removed over 90% of the BDOC while allowing the majority of the AOC through. Heterotrophic plate counts (HPC) remained low during the entire period of monitoring due to high additions of disinfectant residual. In a two-year monitoring of a water treatment plant that switched its treatment process from chlorination to chlorination and ozonation, it was observed that the plant effluent AOC increased by 127% while BDOC increased by 49% after the introduction of ozone. Even though AOC is a fraction of BDOC, measuring only one of these parameters can potentially under- or over-estimate the bacterial regrowth potential of the water.  相似文献   

6.
Advanced oxidation with ultraviolet light and hydrogen peroxide (UV/H2O2) produces hydroxyl radicals that have the potential to degrade a wide-range of organic micro-pollutants in water. Yet, when this technology is used to reduce target contaminants, natural organic matter can be altered. This study evaluated disinfection by-product (DBP) precursor formation for UV/H2O2 while reducing trace organic contaminants in natural water (>90% for target pharmaceuticals, pesticides and taste and odor producing compounds and 80% atrazine degradation). A year-long UV/H2O2 pilot study was conducted to evaluate DBP precursor formation with varying water quality. The UV pilot reactors were operated to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for DBP precursor formation. Two process waters of differing quality were used as pilot influent, i.e., before and after granular activated carbon adsorption. DBP precursors increased under most of the conditions studied. Regulated trihalomethane formation potential increased through the UV/H2O2 reactors from 20 to 118%, depending on temperature and water quality. When Post-GAC water served as reactor influent, less DBPs were produced in comparison to conventionally treated water. Haloacetic acid (HAA5) increased when conventionally treated water served as UV/H2O2 pilot influent, but only increased slightly (MP lamp) when GAC treated water served as pilot influent. No difference in 3-day simulated distribution system DBP concentration was observed between LP and MP UV reactors when 80% atrazine degradation was targeted.  相似文献   

7.
Cho M  Gandhi V  Hwang TM  Lee S  Kim JH 《Water research》2011,45(3):1063-1070
A sequential application of UV as a primary disinfectant with and without H2O2 addition followed by free chlorine as secondary, residual disinfectant was performed to evaluate the synergistic inactivation of selected indicator microorganisms, MS-2 bacteriophage and Bacillus subtilis spores. No synergism was observed when the UV irradiation treatment was followed by free chlorine, i.e., the overall level of inactivation was the same as the sum of the inactivation levels achieved by each disinfection step. With the addition of H2O2 in the primary UV disinfection step, however, enhanced microbial inactivation was observed. The synergism was observed in two folds manners: (1) additional inactivation achieved by hydroxyl radicals generated from the photolysis of H2O2 in the primary UV disinfection step, and (2) damage to microorganisms in the primary step which facilitated the subsequent chlorine inactivation. Addition of H2O2 in the primary disinfection step was also found to be beneficial for the degradation of selected model organic pollutants including bisphenol-A (endocrine disruptor), geosmin (taste and odor causing compound) and 2,4-D (herbicide). The results suggest that the efficiency of UV/free chlorine sequential disinfection processes, which are widely employed in drinking water treatment, could be significantly enhanced by adding H2O2 in the primary step and hence converting the UV process to an advanced oxidation process.  相似文献   

8.
以上海市两座不同水源的典型水厂为研究对象,分析了可生物降解有机物(BOM)和总有机物(以DOC表征)在水厂常规净水工艺中的变化规律.结果表明,水厂常规工艺对AOC、BDOC与DOC的去除能力均不高,且受水温影响明显,两水厂出水均为生物不稳定性饮用水;DOC主要在沉淀单元被去除,BDOC在沉淀、砂滤单元都有去除,AOC则主要在砂滤单元被去除;加氯可造成DOC(或BDOC)向AOC的转化,使出厂水AOC浓度增加,要确保出厂水的生物稳定性,必须同步削减水中BOM与总有机物的浓度.  相似文献   

9.
The destruction of the commonly found cyanobacterial toxin, microcystin-LR (MC-LR), in surface waters by UV-C/H2O2 advanced oxidation process (AOP) was studied. Experiments were carried out in a bench scale photochemical apparatus with low pressure mercury vapor germicidal lamps emitting at 253.7 nm. The degradation of MC-LR was a function of UV fluence. A 93.9% removal with an initial MC-LR concentration of 1 μM was achieved with a UV fluence of 80 mJ/cm2 and an initial H2O2 concentration of 882 μM. When increasing the concentration of MC-LR only, the UV fluence-based pseudo-first order reaction rate constant generally decreased, which was probably due to the competition between by-products and MC-LR for hydroxyl radicals. An increase in H2O2 concentration led to higher removal efficiency; however, the effect of HO scavenging by H2O2 became significant for high H2O2 concentrations. The impact of water quality parameters, such as pH, alkalinity and the presence of natural organic matter (NOM), was also studied. Field water samples from Lake Erie, Michigan and St. Johns River, Florida were employed to evaluate the potential application of this process for the degradation of MC-LR. Results showed that the presence of both alkalinity (as 89.6-117.8 mg CaCO3/L) and NOM (as ∼2 to ∼9.5 mg/L TOC) contributed to a significant decrease in the destruction rate of MC-LR. However, a final concentration of MC-LR bellow the guideline value of 1 μg/L was still achievable under current experimental conditions when an initial MC-LR concentration of 2.5 μg/L was spiked into those real water samples.  相似文献   

10.
The energy consumptions of conventional ozonation and the AOPs O3/H2O2 and UV/H2O2 for transformation of organic micropollutants, namely atrazine (ATR), sulfamethoxazole (SMX) and N-nitrosodimethylamine (NDMA) were compared. Three lake waters and a wastewater were assessed. With p-chlorobenzoic acid (pCBA) as a hydroxyl radical (OH) probe compound, we experimentally determined the rate constants of organic matter of the selected waters for their reaction with OH (kOH,DOM), which varied from 2.0 × 104 to 3.5 × 104 L mgC−1 s−1. Based on these data we calculated OH scavenging rates of the various water matrices, which were in the range 6.1-20 × 104 s−1. The varying scavenging rates influenced the required oxidant dose for the same degree of micropollutant transformation. In ozonation, for 90% pCBA transformation in the water with the lowest scavenging rate (lake Zürich water) the required O3 dose was roughly 2.3 mg/L, and in the water with the highest scavenging rate (Dübendorf wastewater) it was 13.2 mg/L, corresponding to an energy consumption of 0.035 and 0.2 kWh/m3, respectively. The use of O3/H2O2 increased the rate of micropollutant transformation and reduced bromate formation by 70%, but the H2O2 production increased the energy requirements by 20-25%. UV/H2O2 efficiently oxidized all examined micropollutants but energy requirements were substantially higher (For 90% pCBA conversion in lake Zürich water, 0.17-0.75 kWh/m3 were required, depending on the optical path length). Energy requirements between ozonation and UV/H2O2 were similar only in the case of NDMA, a compound that reacts slowly with ozone and OH but is transformed efficiently by direct photolysis.  相似文献   

11.
Organic matter in source water has presented many challenges in the field of water purification, especially for conventional treatment. A two-year-long pilot test comparing water treatment processes was conducted to enhance organic matter removal. The tested process combinations included the conventional process, conventional plus advanced treatment, pre-oxidation plus conventional process and pre-oxidation plus conventional plus advanced treatment. The efficiency of each kind of process was assayed with the comprehensive indices of COD(Mn), TOC, UV(254), AOC, BDOC, THMs, and HAAs and their formation potential. The results showed that the combination of the conventional process and O(3)-BAC provides integrated removal of organic matter and meets the required standards. It is the best performing treatment tested in this investigation for treating polluted source water in China. Moreover, much attention should be paid to organic removal before disinfection to control DBP formation and preserve biostability. This paper also reports the range of efficiency of each unit process to calculate the total efficiency of different process combinations in order to help choose the appropriate water treatment process.  相似文献   

12.
Metal loaded semiconductors in general possess greater photocatalytic activity than pure semiconductors. Hence, with an attempt to achieve higher photocatalytic activity, Au-TiO2 photocatalysts were prepared by deposition-precipitation method and used for the photocatalytic degradation of an azo dye (Acid Red 88; AR88). The materials were characterized by different analytical techniques. A possible mechanism for the photocatalytic degradation of AR88 by Au-TiO2 in the absence and presence of other oxidizing agents (peroxomonosulfate (PMS), peroxodisulfate (PDS) & hydrogen peroxide (H2O2)) has been proposed. The extent of mineralization of the target pollutant was also evaluated using Total Organic Carbon (TOC) analysis.  相似文献   

13.
Aqueous solutions of atrazine (ATZ, 2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine) were photolysed (λ = 254 nm) by low pressure UV/H2O2 process (LP/UV/H2O2) under a variety of parameters including hydrogen peroxide, the initial concentration of ATZ, pH, and humic acid. The results show that the most favourable reaction condition appears to be a moderate concentration of H2O2 from 100 mg/L to 120 mg/L. The presence of humic acid in the solution has a negative impact on the LP/UV/H2O2 treatment because of scavenging effects. Ninety percent of ATZ is destroyed in one hour under the optimum conditions. In this study, LP/UV/ H2O2 treatment of ATZ yielded several organic by products which are identified, including DIA, DEA, OHDIA, OHDEA, DAA and OAAT. They are quantified over the range of treatment tested and the ATZ degradation scheme is proposed combined with by products information.  相似文献   

14.
French River water (Nova Scotia, Canada) was separated into six different natural organic matter (NOM) fractions, including hydrophobic acids, bases and neutrals and hydrophilic acids, bases and neutrals. The raw water, as well as each of the NOM fractions were analysed for disinfection by-product (DBP) formation potential before and after advanced oxidation with UV/TiO2 to determine the efficacy of this treatment for the removal of DBP precursors. The UV/TiO2 treatment was carried out with a nanostructured thin film (NSTF), coated with TiO2 which is compared with the use of a TiO2 suspension. For the raw river water, removals of total trihalomethane formation potential (TTHMFP) and total haloacetic acid formation potential (THAA9FP) were found to be approximately 20% and 90%, respectively, with 50 mJ/cm2 UV exposure and 1 mg/L TiO2. For the fractionated samples, approximately 75% of both trihalomethane (THM) and haloacetic acid (HAA) precursors were found to be associated with the hydrophobic acid fraction. For this individual fraction the same UV/TiO2 treatments exhibited approximately 20-25% removal of both TTHMFP and THAA9FP, suggesting that the fractionation process may have affected the treatability of HAA precursors or may have altered the results of the oxidation processes.  相似文献   

15.
The kinetics of photodegradation of the pesticide metaldehyde by UV/H2O2 and UV/TiO2 in laboratory grade water and a natural surface water were studied. Experiments were carried out in a bench scale collimated beam device using UVC radiation. Metaldehyde was efficiently degraded by both processes in laboratory grade water at identical rates of degradation (0.0070 and 0.0067 cm2 mJ−1 for UV/TiO2 and UV/H2O2 respectively) when optimised doses were used. The ratio between oxidant and metaldehyde was significantly higher for H2O2 due to its low photon absorption efficiency at 254 nm. However, the presence of background organic compounds in natural water severely affected the rate of degradation, and whilst the pseudo first-order rate constant of degradation by UV/H2O2 was slowed down (0.0020 cm2 mJ−1), the degradation was completely inhibited for the UV/TiO2 process (k′ = 0.00007 cm2 mJ−1) due to the blockage of active sites on TiO2 surface by the background organic material.  相似文献   

16.
Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L−1 Fe2+ and 10 mg L−1 of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3-, the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe3+-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments.  相似文献   

17.
《Urban Water Journal》2013,10(8):672-677
This study focuses on reducing the concentration of assimilable organic carbon (AOC) in treated drinking water. Experiments were conducted to evaluate the efficiency of AOC removal by biological activated carbon filters (BACF) in a pilot-scale system. The measured values of AOC in treated drinking water were approximately 59.0 ± 8.6 μg acetate-C/L. The results show that BACFs reduce the total concentration of AOC. The concentration of AOC primarily indicates microbial growth in a water supply network, and the amount of AOC in the water is significantly reduced after BACF treatment. After BACF treatment, the removal of AOC was approximately 58% after 40 min of empty-bed contact time. An AOC empirical equation was established by determining the relationship between water quality parameters, such as total organic carbon, dissolved organic carbon, UV254, ammonia nitrogen, and total phosphorous.  相似文献   

18.
The degradation of two pesticides, bromoxynil and trifluralin, was investigated in ultrapure and natural water solutions under ultraviolet (UV) light and a combination of UV and hydrogen peroxide (H2O2). The effect of pH on the photooxidation of the pesticides was also studied. The results indicated that under direct photolysis with monochromatic light at 253.7 nm and different conditions, the photochemical rates followed first-order kinetics, with fluence-based rate constants ranging from 9.15 × 10−4 to 6.37 × 10−3 cm2 mJ−1 and 7.63 × 10−3 to 1.47 × 10−2 cm2 mJ−1 for bromoxynil and trifluralin, respectively. Quantum yields, in the range of 0.08-0.25 for bromoxynil and 0.12-0.72 for trifluralin, were observed in experiments using ultrapure water. The study also found that the UV/H2O2 process enhanced the oxidation rate in comparison to direct photolysis. A 90% degradation with UV dose of 333 and 188 mJ cm−2 was achieved for bromoxynil and trifluralin, respectively, in natural water, in presence of 8.8 × 10−4 M H2O2. To assess the aquatic toxicity, the Microtox® 81.9% screening test protocol was used before and after treatment. The test results indicated a decrease in the acute toxicity of the samples after treatment for both pesticides.  相似文献   

19.
The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300 Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay.Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.  相似文献   

20.
This article examines the oxidative disposal of Prozac® (also known as Fluoxetine, FXT) through several oxidative processes with and without UV irradiation: for example, TiO2 alone, O3 alone, and the hybrid methods comprised of O3 + H2O2 (PEROXONE process), TiO2 + O3 and TiO2 + O3 + H2O2 at the laboratory scale. Results show a strong pH dependence of the adsorption of FXT on TiO2 and the crucial role of adsorption in the whole degradation process. Photolysis of FXT is remarkable only under alkaline pH. The heterogeneous photoassisted process removes 0.11 mM FXT (initial concentration) within ca. 60 min with a concomitant 50% mineralization at pH 11 (TiO2 loading, 0.050 g L−1). The presence of H2O2 enhances the mineralization further to >70%. UV/ozonation leads to the elimination of FXT to a greater extent than does UV/TiO2: i.e., 100% elimination of FXT is achieved by UV/O3 in the first 10 min of reaction and almost 97% mineralization is attained under UV irradiation in the presence of H2O2. The hybrid configuration UV + TiO2 + O3 + H2O2 enhances removal of dissolved organic carbon (DOC) in ca. 30 min leaving, however, an important inorganic carbon (IC) content. In all cases, the presence of H2O2 improves the elimination of DOC, but not without a detrimental effect on the biodegradability of FXT owing to the low organic carbon content in the final treated effluent, together with significant levels of inorganic byproducts remaining. The photoassisted TiO2/O3 hybrid method may prove to be an efficient combination to enhance wastewater treatment of recalcitrant drug pollutants in aquatic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号