共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel 6-DoF parallel manipulator I with three planar limbs is proposed and its dynamics is analyzed systematically. First, its characteristics and DoF are analyzed and calculated. Second, the formulae for solving kinematics of the moving platform and the planar limbs are derived. Third, the formulae for solving the inertial wrench applied on the planar limbs and the moving platform are derived, and dynamics formula is derived for solving dynamic active forces applied onto the planar limbs. Fourth, a singularity of the proposed parallel manipulator is determined and analyzed. Fifth, an analytic example is given for solving the kinetostatics and dynamics of the proposed parallel manipulator, and the solved results are analyzed and verified by the simulation mechanism. Finally, a workspace is constructed and analyzed by comparing with an existing 6-DoF parallel manipulator. 相似文献
2.
Many industrial applications need less than 6 degrees of freedom (DOF) to manipulate. On one hand, the parallel manipulators (PMs) with lower DOF have some advantages such as low manufacturing and control cost. On the other hand, they have more complicated kinematics. Among PMs with lower DOF, the 5-DOF PMs have particularly many industrial applications. Within the group of 5-DOF PMs, the three translational and two rotational (3T2R) type has more industrial applications than three rotational and two translational type. In this paper, we analyze and optimize the 5-RPUR PM which is a 3T2R type. The kinematic analysis is studied using the screw theory. The boundary and volume of the workspace is obtained using a geometrical method. In addition, singularity analysis is studied. Particle swarm optimization is utilized to optimize the workspace and the accuracy simultaneously, and achieve a roughly homogeneous accuracy index over the workspace. The boundary of the optimized workspace is depicted and we show that the optimized workspace is singularity free. The accuracy index of the manipulator is calculated and depicted in several cross-sections of the workspace. 相似文献
3.
《Robotics and Autonomous Systems》2014,62(10):1377-1386
This paper deals with the dynamic modeling and design optimization of a three Degree-of-Freedom spherical parallel manipulator. Using the method of Lagrange multipliers, the equations of motion of the manipulator are derived by considering its motion characteristics, namely, all the components rotating about the center of rotation. Using the derived dynamic model, a multiobjective optimization problem is formulated to optimize the structural and geometric parameters of the spherical parallel manipulator. The proposed approach is illustrated with the design optimization of an unlimited-roll spherical parallel manipulator with a main objective to minimize the mechanism mass in order to enhance both kinematic and dynamic performances. 相似文献
4.
Metin Toz 《Advanced Robotics》2014,28(9):625-637
In this paper, dimensional optimization of a six-degrees-of-freedom (DOF) 3-CCC (C: cylindrical joint) type asymmetric parallel manipulator (APM) is performed by using particle swarm optimization (PSO). The 3-CCC APM constructed by defining three angle and three distance constraints between base and moving platforms is a member of 3D3A generalized Stewart–Gough platform (GSP) type parallel manipulators. The dimensional optimization purposes to find the optimum limb lengths, lengths of line segments on the base and moving platforms, attachment points of the line segments on the base platform, the orientation angles of the moving platform, and position of the end-effector in the reachable workspace in order to maximize the translational and orientational dexterous workspaces of the 3-CCC APM, separately. The dexterous workspaces are obtained by applying condition number and minimum singular values of the Jacobian matrix. The optimization results are compared with the traditional GSP manipulator for illustrating the kinematic performance of 3-CCC APM. Optimizations show that 3-CCC APM have superior dexterous workspace characteristics than the traditional GSP manipulator. 相似文献
5.
6.
A novel 5-DOF 3SPU+2SPRR type parallel manipulator is proposed. First, the formulae are derived for solving the kinematics parameters of the moving platform. Second, the kinematics of the active legs and connection rod are analyzed, and the formulae for solving velocity and acceleration of the active legs and connection rod are derived. Third, the formulae are derived for solving the dynamic active and constrained forces. Finally, an analytic example is given for solving the dynamics, and the analytic solved results are verified by the mechanism simulation. This paper is aimed at laying a solid theoretical and technical foundation for its prototype manufacture and control. 相似文献
7.
F. Ranjbaran J. Angeles M. A. González-Palacios R. V. Patel 《Journal of Intelligent and Robotic Systems》1995,14(1):21-41
Discussed in this paper are the issues underlying the mechanical design of a seven-axes isotropic manipulator. The kinematic design of this manipulator was made based on one main criterion, namely, accuracy. Thus, the main issue determining the underlying architecture, defined by its Hartenberg—Denavit (HD) parameters, was the optimization of its kinematic conditioning. This main criterion led not to one set of HD parameters, but rather to a manifold of these sets, which allowed the incorporation of further requirements, such as structural behavior, workspace considerations and functionality properties. These requirements in turn allowed the determination of the link shapes and the selection of actuators. The detailed mechanical design led to heuristic rules that helped in the decision-making process in defining issues such as link sub-assemblies and motor location along the joint axes. 相似文献
8.
Redundant actuation can improve the performance and ability of parallel manipulator. In order to deal with coordination and distribution of the driving force of the parallel manipulator with redundant actuation and to realize the control strategy based on dynamics, on the basis of the original 5UPS/PRPU parallel manipulator, it increases a drive for the middle PRPU passive constraint branch to make it a redundant actuation branch. It introduces configurations’ redundant types and compositions of 5UPS/PRPU parallel manipulator with redundant actuation, illustrates that the mechanism is redundant actuation from the perspective of degree of freedom and establishes a dynamic model based on Lagrangian method. On the basis of the weighted optimization principle of driving torque, it optimizes the driving torque of the parallel manipulator and calculates the driving force of the redundant driving chain with cutting force. It carries out the simulation by using ADAMS software and proves validity of dynamic model. Finally it detects the dynamic performance of the parallel manipulator by processing experiment of parallel manipulator with redundant actuation and its non-redundant counterpart. 相似文献
9.
A novel 5-DoF parallel manipulator (PM) with two composite rotational/linear active legs is proposed and its kinematics and statics are studied systematically. First, a prototype of this PM is constructed and its displacement is analyzed. Second, the formulas are derived for solving the linear/angular velocity and acceleration of UPS composite active leg. Third, the Jacobian and Hessian matrices are derived and formulas for solving the velocity, statics and acceleration of this PM are derived. Third, a reachable work space is constructed using a CAD variation geometric approach. Finally, the kinematics and statics of this PM are illustrated and solved. The solved results are verified by the simulation results. 相似文献
10.
In this paper, we present a method, based on interval analysis, to solve the problem of designing cable-driven parallel manipulators (CDPMs) for a desired workspace. The constraint of having positive cable tensions ensuring the equilibrium of the platform has to be satisfied within the given workspace. The proposed algorithm is based on interval analysis, which covers the entire workspace and hence guarantees a singularity-free workspace. Furthermore, the algorithm is capable of finding all possible solutions for this problem and an optimal one is selected according to the user-defined criterion. Two examples are selected to show the efficiency of the developed algorithm in solving this complex problem. The first one deals with the design of a planar CDPM and the second one considers a spatial CDPM. In both cases, the algorithm succeeded to find all possible designs from which the designer can select a solution that fits best his application. 相似文献
11.
High precision is still one of the challenges when parallel kinematic machines are applied to advanced equipment. In this paper, a novel planar 2-DOF parallel kinematic machine with kinematic redundancy is proposed and a method for redundant force optimization is presented to improve the precision of the machine. The inverse kinematics is derived, and the dynamic model is modeled with the Newton–Euler method. The deformations of the kinematic chains are calculated and their relationship with kinematic error of the machine is established. Then the size and direction of the redundant force acting on the platform are optimized to minimize the position error of the machine. The dynamic performance of the kinematically redundant machine is simulated and compared with its two corresponding counterparts, one is redundantly actuated and the other is non-redundant. The proposed kinematically redundant machine possesses the highest position precision during the motion process and is applied to develop a precision planar mobile platform as an application example. The method is general and suitable for the dynamic modeling and redundant force optimization of other redundant parallel kinematic machines. 相似文献
12.
Donghun LeeAuthor Vitae Jongwon KimAuthor Vitae 《Robotics and Autonomous Systems》2011,59(10):813-826
This paper presents the design optimization of a mobile welding robot based on the analysis of its workspace. A welding robot has been developed to be used inside the double-hull structure of ships, and it shows good welding functionality. But there is a need to optimize the kinematic variables ensuring that the required welding functions inside the ships are satisfied. The task-oriented workspace, which is the workspace enabling specific rotations, has been defined in order to validate the welding ability of the robot, and incorporating the required rotational capabilities. To calculate the workspace, a geometric approach is adopted which considers the pitching and yawing angles simultaneously. Based on the workspace analysis, a scenario is compiled for considering a mass reduction, and a ratio between the design parameters and the workspace, with constraints on the workspace margins. The proposed optimization procedure is composed of two steps of coarse and fine searching. In the coarse searching step, a feasible parameter region (FPR) is defined, which satisfies the geometrical design constraints, and can be obtained without any considerations of the objective functions. In the fine searching step, the design parameters are determined by using the optimization technique of the conjugate gradient method in the overall FPRs. The suggested approach to calculating the task-oriented workspace, and the procedure of optimal design, are expected to be applied to general industrial robots. 相似文献
13.
3-DOF translational parallel manipulators have been developed in many different forms, but they still have respective disadvantages in different applications. To overcome their disadvantages, the structure and constraint design of a 3-DOF translational parallel manipulator is presented and named the Tri-pyramid Robot. In the constraint design of the presented manipulator, a conical displacement subset is defined based on displacement group theory. A triangular pyramidal constraint is presented and applied in the constraint designs between the manipulator?s subchains. The structural properties including the decoupled motions, overconstraint elimination, singularity free workspace, fixed actuators and isotropic configuration are analyzed and compared to existing structures. The Tri-pyramid Robot is constrained and realized by a minimal number of 1-DOF joints. The kinematic position solutions, workspace with variation of structural parameters, Jacobian matrix, isotropic and dexterity analysis are performed and evaluated in the numerical simulations. 相似文献
14.
Yogesh Singh 《Advanced Robotics》2016,30(10):652-675
This paper presents a comparative analysis of three degrees of freedom planar parallel robotic manipulators (x, y and θz motion platforms) namely 2PRP-PPR, 2PRR-PPR, 3PPR (Hybrid), 3PRP (Hephaist) and 3PPR U-base in terms of optimal kinematic design performance, static structural stiffness and dynamic performance (energy and power consumption). Kinematic and dynamic performance analyses of these platforms have been done using multibody dynamics software (namely ADAMS/View). Static stiffness of the above-mentioned manipulators have been analysed, compared using the conventional joint space Jacobian stiffness matrix method, and this method has been verified through a standard finite-element software (namely NASTRAN) as well. The size of the fixed base or aspect ratio (width/height) can be varied for various working conditions to understand its design parameters and optimal design aspects which are depending on the fixed base structure. Different aspect ratios (fixed base size) are considered for the comparative analyses of isotropy, manipulability and stiffness for the above-mentioned planar parallel manipulators. From the numerical simulation results, it is observed that the 2PRP-PPR manipulator is associated with a few favourable optimum design aspects such as singularity-free workspace, better manipulability, isotropy, higher stiffness and better dynamic performance in terms of power and energy requirement as compared to other planar parallel manipulators. 相似文献
15.
In this paper, a bio-inspired parallel manipulator with one translation along z-axis and two rotations along x- and y- axes is developed as the hybrid head mechanism of a groundhog robotic system. Several important issues including forward kinematic modeling, performance mapping, and multi-objective improvement are investigated with specific methods or technologies. Accordingly, the forward kinematics is addressed based on the integration of radial basis function network and inverse kinematics. A novel performance index called dexterous stiffness is defined, derived and mapped. The multi-objective optimization with particle swarm algorithm is conducted to search for the optimal dexterous stiffness and reachable workspace. 相似文献
16.
In this paper, a planar 2-DOF parallel manipulator with actuation redundancy is proposed and the optimal design considering kinematics and natural frequency is presented. The stiffness matrix and mass matrix are derived, and the structural dynamics is modeled. The natural frequency is obtained on the basis of dynamic model. Based on the kinematic performance, the range for link length is given. Then, considering the natural frequency, the geometry is optimized. The natural frequency is simulated and compared with the corresponding non-redundant parallel manipulator. The designed redundant parallel manipulator has desired kinematic performance and natural frequency and is incorporated into a 4-DOF hybrid machine tool. 相似文献
17.
18.
Driven by the requirements of the large-scale component assemblage for the docking platform, this paper proposes a novel one-translational-three-rotational (1T3R) parallel manipulator with an articulated travelling plate, which can provide high stiffness and good accuracy performances in the assemblage. The underlying architecture of this manipulator is briefly addressed with emphasis on the practical realization of the articulated travelling plate. On the basis of the kinematic analysis of the 1T3R parallel manipulator, its optimal design considering the force and motion transmissibility is carried out, in which the generalized virtual power transmissibility of this manipulator is defined. This paper aims at laying a solid theoretical and technical foundation for the prototype design and manufacture of the 1T3R parallel manipulator. 相似文献
19.
A new methodology for making design decisions of structures using multi-material optimum topology information is presented. Multi-material analysis contributes significant applications to enhance the bearing capacity and performance of structures. A method that chooses an appropriate material combination satisfying design stiffness requirement economically is currently needed. An alternative method of making design-decision is to utilize a multi-material topology optimization (MMTO) approach. This study provides a new computational design optimization procedure as a guideline to find the optimal multi-material design by considering structure strain energy and material cost. The MMTO problem is analyzed using an alternative active-phase approach. The procedure consists of three design steps. First, steel grid configurations and composite with material properties are defined as a given structure for automatic design decision-making (DDM). And then design criteria of the steel composites structure is given to be limited strain energy by designers and engineers. Second, topology changes in the automatic distribution of multi-steel materials combination and volume control of each material during optimization procedures are achieved and at the same time, their converged minimal strain energy is produced for each material combination. And third, the strain energy and material cost which is computed based on the material ratio in the combinations are used as design decision parameters. A study in constructional steel composites to produce optimal and economical multi-material designs demonstrates the efficiency of the present DDM methodology. 相似文献
20.
CHENG XueTao XU XiangHua & LIANG XinGang Key Laboratory for Thermal Science Power Engineering of Ministry of Education 《中国科学:信息科学(英文版)》2011,(4)
For distribution optimization of the flow rate of cold fluid and heat transfer area in the parallel thermal network of the thermal control system in spacecraft,a physical and mathematical model is set up,analyzed and discussed with the entransy theory.It is found that the optimization objective of this problem and the optimization direction of the extremum entransy dissipation principle are consistent in theory.For a two-branch thermal network system,the distributions of the flow rate of the cold fluid and ... 相似文献