首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently there has been considerable interest in increasing the applicability and utility of robots by developing manipulators which possess kinematic and/or actuator redundancy. This paper presents a unified approach to controlling these redundant robots. The proposed control system consists of two subsystems: an adaptive position controller which generates the Cartesian-space control force FRm required to track the desired end-effector position trajectory, and an algorithm that maps this control input to a robot joint torque vector TRn. The F → T map is constructed so that the robot redundancy (kinematic and/or actuator) is utilized to improve the performance of the robot. The control scheme does not require knowledge of the complex robot dynamic model or parameter values for the robot or the payload. As a result, the controller is very general and is computationally efficient for on-line implementation. Computer simulation results are given for a kinematically redundant robot, for a robot with actuator redundancy, and for a robot which possesses both kinematic and actuator redundancy. In each case the results demonstrate that accurate end-effector trajectory tracking and effective redundancy utilization can be achieved simultaneously with the proposed scheme.  相似文献   

2.
徐为民  邵诚 《控制与决策》1997,12(2):109-113,131
提出一种基于任务空间的直接自适应阻抗方法,它不要求辨识机器手动态模型结构和参数,不需要计算机器手的运动学逆变换,因此,避免了基于机器手模型线性参数辨识的控制方法的缺点。  相似文献   

3.
This article presents an adaptive scheme for controlling the end-effector impedance of robot manipulators. The proposed control system consists of three subsystems: a simple “filter” that characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller that produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter. Computer simulation results are given for a planar four degree-of-freedom redundant robot under adaptive impedance control. These results demonstrate that accurate end-effector impedance control and effective redundancy utilization can be achieved simultaneously by using the proposed controller.  相似文献   

4.
This paper presents a unified motion controller for mobile manipulators which not only solves the problems of point stabilization and trajectory tracking but also the path following problem. The control problem is solved based on the kinematic model of the robot. Then, a dynamic compensation is considered based on a dynamic model with inputs being the reference velocities to the mobile platform and the manipulator joints. An adaptive controller for on-line updating the robot dynamics is also proposed. Stability and robustness of the complete control system are proved through the Lyapunov method. The performance of the proposed controller is shown through real experiments.  相似文献   

5.
We consider nonholonomic mobile manipulators built from an n a joint robotic arm and a nonholonomic mobile platform with two independently driven wheels. Actually, there is no efficient kinematic formalism for these systems which are generally characterized by their high number of actuators. So, kinematic modelling is presented with particular emphasis on redundancy. Whereas kinematic redundancy is well known in the holonomic case, it is pointed out that it is necessary to define velocity redundancy in the case of nonholonomic systems. Reduced velocity kinematics based on quasi-velocities are shown to provide an efficient formalism. Two examples of mobile manipulators are presented. Finally, reduced velocity kinematics and velocity redundancy are shown to be adequate tools in order to realize operational task while optimizing criteria such as manipulability.  相似文献   

6.
The U.S. Department of Energy has identified robotics as a major technology to be utilized in its program of environmental restoration and waste management, and in particular has targeted robotic handling of hazardous waste to be an essential element in this program. Successful performance of waste-handling operations will require a robot to perform complex tasks involving both accurate positioning of its end effector and compliant contact between the end effector and the environment, and will demand that these tasks be completed in uncertain surroundings. This article focuses on the development of a robot control system capable of meeting the requirements of hazardous-waste-handling applications and presents as a solution an adaptive scheme for controlling the mechanical impedance of kinematically redundant manipulators. The proposed controller is capable of accurate end effector impedance control and effective redundancy utilization, does not require knowledge of the complex robot dynamic model or parameter values for the robot or the environment, and is implemented without calculation of the robot inverse kinematic transformation. Computer simulation results are given for a 4 degree of freedom redundant robot under adaptive impedance control. These results indicate that the proposed controller is capable of successfully performing tasks of importance in robotic waste-handling applications.  相似文献   

7.
This paper presents an adaptive scheme for the motion control of kinematically redundant manipulators. The proposed controller is very general and computationally efficient since it does not require knowledge of either the mathematical model or the parameter values of the robot dynamics, and is implemented without calculation of the robot inverse dynamics or inverse kinematic transformation. It is shown that the control strategy is globally stable in the presence of bounded disturbances, and that in the absence of disturbances the size of the residual tracking errors can be made arbitrarily small. The performance of the controller is illustrated through computer simulations with a nine degree-of-freedom (DOF) compound manipulator consisting of a relatively small, fast six-DOF manipulator mounted on a large three-DOF positioning device. These simulations demonstrate that the proposed scheme provides accurate and robust trajectory tracking and, moreover, permits the available redundancy to be utilized so that a high bandwidth response can be achieved over a large workspace.  相似文献   

8.
A recurrent neural network, called the Lagrangian network, is presented for the kinematic control of redundant robot manipulators. The optimal redundancy resolution is determined by the Lagrangian network through real-time solution to the inverse kinematics problem formulated as a quadratic optimization problem. While the signal for a desired velocity of the end-effector is fed into the inputs of the Lagrangian network, it generates the joint velocity vector of the manipulator in its outputs along with the associated Lagrange multipliers. The proposed Lagrangian network is shown to be capable of asymptotic tracking for the motion control of kinematically redundant manipulators.  相似文献   

9.
A kinematic modeling method, which is directly applicable to any type of planar mobile robots, is proposed in this work. Since holonomic constraints have the same differential form as nonholonomic constraints, the instantaneous motion of the mobile robot at current configuration can be modeled as that of a parallel manipulator. A pseudo joint model denoting the interface between the wheel and the ground (i.e., the position of base of the mobile robot) enables the derivation of this equivalent kinematic model. The instantaneous kinematic structures of four different wheels are modeled as multiple pseudo joints. Then, the transfer method of augmented generalized coordinates, which has been popularly employed in modeling of parallel manipulators, is applied to obtain the instantaneous kinematic models of mobile robots. The kinematic models of six different types of planar mobile robots are derived to show the effectiveness of the proposed modeling method. Lastly, for the mobile robot equipped with four conventional wheels, an algorithm estimating a sensed forward solution for the given information of the rotational velocities of the four wheels is discussed. © 2004 Wiley Periodicals, Inc.  相似文献   

10.
A mobile manipulator can perform various tasks efficiently by utilizing mobility and manipulation functions. The coupling of these two functions creates a particular kinematic redundancy introduced by mobility, which is different from that introduced by extra joints. This redundancy is quite desirable for dexterous motion in cluttered environments, but it also significantly complicates the motion planning and control problem. In this paper we propose a new motion planning method for mobile manipulators to execute a multiple task which consists of a sequence of tasks. The task considered in this paper is that the end-effector tracks a prespecified trajectory in a fixed world frame. In a multiple task, the final configuration of each task becomes the initial configuration of the next subsequent task. Such a configuration is known as a commutation configuration, which significantly affects the performance of the multiple task.We formulate the motion planning problem as a global optimization problem and simultaneously obtain the motion trajectory set and commutation configurations. In the formulation, we take account of the case that the platform has a non-holonomic constraint as well as the one that the platform has a holonomic constraint. Simulation results are demonstrated to verify the effectiveness of the proposed method.  相似文献   

11.
履带式移动机器人轨迹跟踪研究   总被引:2,自引:0,他引:2  
详细分析了履带式移动机器人的受力特点,提出了一种适宜进行控制器设计的履带移动机器人模型.根据履带式移动机器人动力学模型和运动学模型,设计了机器人的轨迹跟踪控制器.利用Lyapunov稳定判据证明控制器的全局稳定性.在控制器的设计中考虑了履带一地面作用,引入参数对其描述.考虑到机器人动力学约束,引入机器人速度、加速度控制策略以保证机器人运动平滑.仿真实验验证了该方法的有效性和全局收敛.  相似文献   

12.
This paper deals with coordinated tasks for mobile nonholonomic manipulators. The systems are composed of a nonholonomic mobile platform and a simple kinematic chain holonomic arm. First, concepts such as redundancy and singular configurations are defined. Then, reduced differential models are introduced. It is then possible to work with a set of independent task coordinates. Applications follow for a planar system in the case of point-to-point and continuous path tasks.  相似文献   

13.
In this article, a stable local solution with global characteristics is developed for the joint torque optimization problem in redundant robotic manipulators. It is shown that the local optimization of the inertia inverse weighted dynamic torque corresponds to the global kinetic energy minimization problem. The proposed local-global alternative to the joint torque optimization problem is compared for stability and torque optimality with five different methods used for redundancy resolution of robotic manipulators at the acceleration level. The proposed local-global solution has been implemented and tested on a planar four-DOF kinematically redundant lab robot which was designed and built at Southwest Research Institute (SWRI). Several numerical simulations confirm the positive advantages of solutions which have a local as well as a global interpretation. In addition, a “dynamic manipulation index” is introduced to monitor the stability of an optimization problem in a kinematically redundant robot.  相似文献   

14.
轮式移动机器人是一种典型的非完整约束系统.基于反步法提出一种自适应扩展控制器,对含有未知参数的非完整轮式移动机器人动力学系统进行轨迹跟踪控制并且Lyapunov稳定性理论保证跟踪误差渐近收敛到零.为了克服速度跳变产生滑动,加入了神经动力学模型对控制器进行改进.以两驱动轮移动机器人为例,利用运动学自适应控制器设计出转矩控制器,有效解决了不确定非完整轮式移动机器人动力学系统的轨迹跟踪问题.仿真结果证明该方法的正确性和有效性.  相似文献   

15.
In this paper, we consider trajectory tracking control of a head raising snake robot on a flat plane by using kinematic redundancy. We discuss the motion control requirements to accomplish trajectory tracking and other tasks, such as singular configuration avoidance and obstacle avoidance, for the snake robot. The features of the internal motion caused by kinematic redundancy are considered, and a kinematic model and a dynamic model of the snake robot are derived by introducing two types of shape controllable point. The first is the head shape controllable point, and the other is the base shape controllable point. We analyzed the features of the two kinds of shape controllable point and proposed a controller to accomplish the trajectory tracking of the robot’s head as its main task along with several sub-tasks by using redundancy. The proposed method to accomplish several sub-tasks is useful for both the kinematic model and the dynamic model. Experimental results using a head raising snake robot which can control the angular velocity of its joints show the effectiveness of the proposed controller.  相似文献   

16.
In this paper, we present a tutorial report of the literature on the damped-least squares method which has been used for computing velocity inverse kinematics of robotic manipulators. This is a local optimization method that can prevent infeasible joint velocities near singular configurations by using a damping factor to control the norm of the joint velocity vector. However, the exactness of the inverse kinematic solution has to be sacrificed in order to achieve feasibility.The damping factor is an important parameter in this technique since it determines the trade-off between the accuracy and feasibility of the inverse kinematic solution. Various methods that have been proposed to compute an appropriate damping factor are described.Redundant manipulators, possessing extra degrees of freedom, afford more choice of inverse kinematic solutions than do non-redundant ones. The damped least-squares method has been used in conjunction with redundancy resolution schemes to compute feasible joint velocities for redundant arms while performing an additional subtask. We outline the different techniques that have been proposed to achieve this objective. In addition, we introduce an iterative method to compute the optimal damping factor for one of the redundancy resolution techniques.  相似文献   

17.
This paper addresses the tracking problem for the dynamic model of a unicycle mobile robot. A novel optimization method inspired on the chemical reactions is applied to solve this motion problem by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application.  相似文献   

18.
Common assumptions in most of the previous robot controllers are that the robot kinematics and manipulator Jacobian are perfectly known and that the robot actuators are able to generate the necessary level of torque inputs. In this note, an amplitude-limited torque input controller is developed for revolute robot manipulators with uncertainty in the kinematic and dynamic models. The adaptive controller yields semiglobal asymptotic regulation of the task-space setpoint error. The advantages of the proposed controller include the ability to actively compensate for unknown parametric effects in the dynamic and kinematic model and the ability to ensure actuator constraints are not breached by calculating the maximum required torque a priori  相似文献   

19.
提高柔性冗余度机器人动态特性的最小变形能法   总被引:1,自引:0,他引:1  
冗余度柔性机器人的运动规划是机器人领域的重要前沿课题之一 .利用此机器人的冗余特性 ,可以改善其运动学和动力学性能 .柔性机器人的变形能能够很好地反映出其整体弹性变形程度 .本文提出了在最小变形能意义下的柔性冗余度机器人运动学规划的新方法 .以平面三柔性臂机器人为例进行了仿真 ,通过与最小末端误差意义下的规划策略进行比较 ,充分显示了最小变形能法在提高柔性机器人动态性能的有效性和优越性  相似文献   

20.
基于预测控制的非完整移动机器人视觉伺服镇定   总被引:1,自引:0,他引:1  
非完整移动机器人视觉伺服镇定越来越受到人们的广泛关注. 目前研究人员在解决该问题时未同时考虑摄像机的可见性约束和机器人系统的控制约束, 所设计的控制器在实际应用中很难实现满意的控制. 针对此问题, 本文设计一种预测控制器来解决移动机器人视觉伺服镇定问题. 首先设计运动学预测镇定控制器来产生参考速度指令; 然后设计动力学预测控制器使移动机器人实际速度渐近逼近期望值; 所设计的预测控制器能够容易处理系统中存在的可见性约束和控制约束; 最后对所提出的视觉伺服镇定方法进行仿真验证, 结果表明所设计的控制器能有效解决移动机器人视觉伺服镇定问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号