共查询到20条相似文献,搜索用时 15 毫秒
1.
TiN/CNx multilayer films with bilayer periods of 4.5-40.3 nm were deposited by direct-current magnetron sputtering. Layer morphology and structure of the multilayered films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The TiN/CNx multilayers exhibited coherent epitaxial growth due to the mutual growth-promoting effect at small bilayer period and some crystalline regions going through the interface of TiN/CNx. Nanoindentation tests showed that the hardness of the multilayers varied from 12.5 to 31 GPa, with the highest hardness being obtained with a bilayer period of 4.5 nm. The tribological properties of the films were investigated using a ball-on-disk tribometer in humid air, and the TiN/CNx multilayer with a bilayer period of 4.5 nm also exhibited the lowest friction coefficient and the highest wear resistance. 相似文献
2.
This study investigates the tribological properties and cutting performance of Ti-DLC and Cr-DLC doped metal coatings. The tribological properties of the coatings are evaluated by testing coated disks against an AISI 1045 steel counterbody under dry conditions using an oscillating friction wear tester, and then measuring the subsequent wear depth on the coated disk, the wear width on the steel counterbody, and the friction coefficient. The cutting performance of the coatings is evaluated by using coated high-speed drills to machine stainless steel workpieces, and then measuring the resulting flank wear and hole surface roughness. The results of the wear tests show that the Ti-C:H and Ti-C:H/TiC/TiCN/TiN coatings possess excellent tribological properties, including low coefficients of friction, low wear depths, and low wear widths. Regarding the machining tests, the Ti-C:H/TiC/TiCN/TiN coating has the lowest flank wear and yields the highest hole surface quality under both dry and cutting fluid drilling conditions. The single Ti-C:H coating has excellent tribological properties, but demonstrates a relatively poorer performance in the drilling of stainless steel. Finally, the Cr-DLC coatings all exhibit a poor cutting performance under dry cutting conditions. 相似文献
3.
Different types of diamond-like carbon (DLC) films (ta-C, a-C, ta-C:H and a-C:H) were prepared on super hard alloy (WC-Co) substrate using a T-shape filtered arc deposition (T-FAD) system. At first, the film properties, such as structure, hydrogen content, density, hardness, elastic modulus, were measured. Ta-C prepared with a DC bias of −100 V showed the highest density (3.1 g/cm3) and hardness (70-80 GPa), and the lowest hydrogen content (less than 0.1 at. %). It was found that the hardness of the DLC film is proportional to approximately the third power of film density. The DLC films were then heated for 60 min in an electric furnace at 550 °C in N2. Only the ta-C film hardly change its structure, although other films were graphitized. The 200-nm thick ta-C film was then heated for 60 min through the temperature range from 400 to 800 °C in N2 with 2 vol.% of O2 and the film structure found to be stable up to 700 °C. The substrate was oxidized at 800 °C, indicating the ta-C film had a thermal barrier function up to that temperature. 相似文献
4.
5.
In this paper,graphite-like carbon(GLC)films with Cr buffer layer were fabricated by DC magnetron sputtering technique with the thickness ratio of Cr to GLC films varying from 1:2 to 1:20.The effect of Cr/GLC modulation ratio on microstructure,mechanical and tribological properties in artificial seawater was mainly investigated by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),nano-indenter and a reciprocating sliding tribo-meter.The propagation of defects plays an important role in the evolution of delamination,which is critical to wear failure of GLC films in artificial seawater.Designing the proper multilayer structure could inhibit the defects propagation and thus protect the basis material.The multilayer Cr/GLC film with optimized ratio of 1:3 demonstrates a low average friction coefficient of 0.08±0.006 and wear rate of(2.3±0.3)×10~(-8)mm~3/(N m)in artificial seawater,respectively. 相似文献
6.
Tribological behavior at elevated temperature of multilayer TiCN/TiC/TiN hard coatings produced by chemical vapor deposition 总被引:1,自引:0,他引:1
Mingdong Bao Xuebo XuHaijun Zhang Xiaoping LiuLinhai Tian Zhaoxin ZengYubin Song 《Thin solid films》2011,520(2):833-836
Multilayer hard coatings of TiCN/TiC/TiN on high speed steel substrates were deposited using a chemical vapor deposition system. Evaluations of microstructure, wear morphology of coatings were characterized by scanning electron microscopy, and optical microscopy. Friction coefficient and wear rates of coatings were investigated using ball-on-disk tester sliding against a WC ball at a constant load of 20 N. Tribological behavior of the coatings at room and elevated temperature were discussed. Different changing tendency of friction coefficient were observed from ball-on-disc experiments. Results showed that the friction coefficient of coatings increased gradually to a highest value, then to a relatively constant value at room temperature dry sliding wear. The friction coefficient exhibited a reverse variation tendency at temperature of 550 °C. It got a higher value at the first sliding friction cycles. Then the value of friction coefficient decreased, suffered irregular oscillations and kept a relatively lower value with increasing sliding time. Reasons of the variation of friction coefficient with sliding time and wear mechanism were analyzed and discussed at room and elevated temperatures, respectively. 相似文献
7.
实验利用双放电腔微波-ECR等离子体源设备,采用复合PVD(physical vapor deposition)和PECVD(plasma enhanced chemical vapor deposition)的方法, 先后在NiTi基体上沉积Si和Si/α-C∶H过渡层,然后制备类金刚石薄膜.Raman光谱和透射电镜表明制备的梯度薄膜是典型的类金刚石薄膜,划痕的测试结果表明, Si过渡层沉积时间影响着梯度类金刚石薄膜与NiTi合金基体之间的结合强度,当沉积时间在60min左右时可获得具有最好结合强度的梯度薄膜,而超过或低于这个时间值会导致膜基结合强度降低. 相似文献
8.
9.
A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. Numerical simulation of the optical properties of the multilayer films has been carried out in order to guide the experimental work. The influences of the ZnO and Cu layer thicknesses, and of O2/Ar ratio on the photoelectric and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The structural properties were investigated using X-ray diffraction. The performance of the multilayers as transparent conducting coatings was compared using a figure of merit. In experiments, the thickness of the ZnO layers was varied between 4 and 70 nm and those of Cu were between 8 and 37 nm. The O2/Ar ratios range from 1:5 to 2:1. Low sheet resistance and high transmittance were obtained when the film was prepared using an O2/Ar ratio of 1:4 and a thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm). 相似文献
10.
11.
In order to improve the friction and wear behaviours and rolling contact fatigue (RCF) life of bearing steel materials, Ti/TiN/DLC (diamond-like carbon) multilayer hard films were fabricated onto AISI52100 bearing steel surface by plasma immersion ion implantation and deposition (PIIID) technique. The micro-Raman spectroscopy analysis confirms that the surface film layer possess the characteristic of diamond-like carbon, and it is composed of a mixture of amorphous and crystalline phases, with a variable ratio of sp2/sp3 carbon bonds. Atomic force microscope (AFM) reveals that the multilayer films have extremely smooth area, excellent adhesion, high uniformity and efficiency of space filling over large areas. The nanohardness (H) and elastic modulus (E) measurement indicates that the H and E of DLC multilayer films is about 32 GPa and 410 GPa, increases by 190.9% and 86.4%. The friction and wear behaviours and RCF life of DLC multilayer films specimen have also been investigated by ball-on-disc and three-ball-rod fatigue testers. Results show that the friction coefficient against AISI52100 steel ball decreases from 0.92 to 0.25, the longest wear life increases nearly by 22 times. In addition, wear tracks of the PIIID samples as well as wear tracks of the sliding steel ball were analyzed with the help of optical microscopy and scanning electron microscopy (SEM). The L10, L50, La and mean RCF life L of treated bearing samples, in 90% confidence level, increases by 10.1, 4.2, 3.5 and 3.4 times, respectively. Compared with the bearing steel substrate, the RCF life scatter extent of Ti/TiN/DLC multilayer films sample is improved obviously. 相似文献
12.
Yean-Liang Su 《Vacuum》2005,77(3):343-354
Ti2N-Wx% coatings with different tungsten contents were deposited using unbalanced magnetron sputtering technology. The microstructures and mechanical properties of Ti2N-Wx% coatings have been characterized by SEM, X-ray diffraction (XRD), nanoindentation and adhesion techniques. The tribological performance of the coatings was investigated using an oscillating friction and wear tester under dry conditions. Indexable inserts with Ti2N-Wx% coatings were applied to turning AISI 1045 steel material by a lathe. Micron-drills with Ti2N-Wx% coatings were adopted in the ultra-high speed (105 rpm) Printed Circuit Board (PCB) through-hole drilling test. Experimental results indicate that the coating microstructure, mechanical properties and wear resistance vary according to the tungsten content. Ti2N-W14% coated inserts showed the best wear resistance in 1045 steel turning and PCB through-hole drilling tests. The service life of a Ti2N-W14% coated tool is five times greater than that of an uncoated tool in PCB through-hole drilling test. 相似文献
13.
Z. Znamirowski E. Staryga G. W. Bak D. Jarzynska K. Nikliborc A. Karczemska M. Green 《Journal of Superhard Materials》2007,29(3):169-173
DLC films were deposited on polished both n-type and p-type silicon substrates. The silicon resistivity was ~0.02 Θ cm. Some of the DLC films 20 nm thick were deposited on the n-type Si surface with the submicron cones. SEM and Raman spectroscopy were used for structural investigations. Field electron emission occurs after dielectric breakdown, except for the samples with Si cones for which the emission seems to originate from SiC formed during the first stage of electron emission. It seems that too much sp2 graphite phase may give rise to the observed increase in the turn-on field from 50 V/μm up to 150 V/μm. 相似文献
14.
In order to take the tetrahedral amorphous carbon (ta-C) films as the high acoustic impedence layer in a Bragg reflector isolating acoustic wave from the substrate in solidly mounted resonator, the multilayer films consisting of sp2-rich layers and sp3-rich layers were deposited from a filtered cathodic vacuum arc by adjusting the substrate bias. The microstructure of the films was evaluated using a visible Raman spectroscopy. The stress was calculated according to the changed curvature of the coated and bare substrate. The hardness, modulus and scratching were measured using a nanoindenter. It has been shown that the multilayer structure maintaining high tetrahedral content, high hardness and high elastic modulus is still characterized with lower intrinsic stress and better adhesion. 相似文献
15.
We have fabricated, by simultaneous DC and RF magnetron sputtering, multilayer transparent electrodes having much lower electrical resistance than the widely used transparent conductive oxide electrodes. The multilayer structure consists of three layers (ZnO/Ag/ZnO). Ag films with different film thickness were used as metallic layers. Optimum thicknesses of Ag and ZnO films were determined for high optical transmittance and good electrical conductivity. Several analytical tools such as spectrophotometer, atomic force microscopy, scanning electron microscopy and four-point probe were used to explore the possible changes in electrical and optical properties. A high quality transparent electrode, having resistance as low as 3 Ω/sq and high optical transmittance of 90% was obtained at room temperature and could be reproduced by controlling the preparation process parameters. The electrical and optical properties of ZnO/Ag/ZnO multilayers were determined mainly by the Ag film properties. The performance of the multilayers as transparent conducting materials was also compared using a figure of merit. 相似文献
16.
不锈钢衬底上沉积类金刚石薄膜的硬度 总被引:2,自引:0,他引:2
利用射频辉光放电法在不锈钢衬底上制备了类金刚石薄膜,用显微硬度计测试了薄膜与衬底复合膜度和衬底硬度。并用B.Jonson和B.Hogmark方法将薄硬度分离出来,得到了硬度值与制与制备参数间的关系,确定了在不锈钢衬底上沉积高度和强附丰度类金刚石薄膜的最佳工艺条件范围,并对实验结果进行了理论解释。 相似文献
17.
The Cu/Ti multilayer (ML) films were deposited on Si(1 0 0) and Si(1 1 1) substrate with a series of pair layers with Vanguard sputtering system. The influences of periodic number and substrate structure on UV-reflectivity of Cu/Ti superlattice films were investigated carefully. The result shows that the Cu/Ti ML films have clear layer-structure. The ML films deposited on Si(1 0 0) and Si(1 1 1) have UV-reflectivity of about 90% and 67% at 200 nm, respectively, but they have lower soft X-ray reflectivity of about 1.9% at 13.04 nm in terms of wavelength, with near normal incidence of 5°. The transmission microscope image indicates that the fabricated Cu/Ti ML films have superlattice structure. 相似文献
18.
采用线性离子束沉积技术于AZ80镁合金微弧氧化(MAO)陶瓷层表面沉积不同厚度的类金刚石碳(DLC)膜,形成DLC/MAO复合膜层.对比研究4种膜基系统的表面结构特征、力学性能以及摩擦学性能差异.结果表明:随DLC膜厚度增加,复合膜层表面微孔数量减少,孔径减小,但凹凸不平趋势增加,且DLC膜表面颗粒特征更加明显,表现为DLC-80min/MAO/AZ80膜基系统具有最小的表面粗糙度,最大的硬度H、弹性模量E及H/E值;不同厚度DLC/MAO/AZ80膜基系统平均摩擦因数较MAO/AZ80显著降低;DLC膜厚度增加导致3种复合膜基系统的表面微观结构改变,使得摩擦因数与磨痕形貌存在差异;各膜基系统 相似文献
19.