首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
含硫天然气发生连续泄漏时,危害区域的面积随风速的增大而减小,随泄漏孔径的增大而扩大。发生大规模瞬态泄漏时,在泄漏初期,人员产生不适症状的危害区域及爆炸危险区域都随时间的增加而逐渐扩大;随着时间的延长,泄漏气体不断被空气稀释而使得浓度降低,若时间足够长,危害区域将逐步消失。通过含硫化氢天然气泄漏扩散后果的计算和模拟,可以得出含硫天然气扩散浓度与距离及高度的关系。  相似文献   

2.
通过对平坦地区天然气管路不同泄漏点气体扩散模拟研究发现,静风条件下,天然气在大气中自由扩散稳定后,不同泄漏点泄漏后的速度、浓度分布趋势基本一致,均关于泄漏口垂直方向对称,喷口附近、喷口垂直上方及近地面区域的硫化氢浓度较高,属危险区域;有风条件下,喷射区域发生弯曲,气体扩散范围增大,风对污染物起输送、稀释、扩散作用,其效果随高度增加不断增强,模拟空间内危险区域随着风速的增大而减小.不管有无风力影响,泄漏口距集输起端越近危险性越大.模拟得出的不同位置气体泄漏扩散规律及危险区域,将为安全生产和应急抢险提供较好的参考依据.  相似文献   

3.
天然气管道因腐蚀穿孔等原因引起的小孔泄漏产生的信号很弱,泄漏初期很难被发现和定位,一旦天然气泄漏到大气中并达到爆炸极限,可能会造成非常严重的后果。基于计算流体力学,建立天然气管道从土壤泄漏到空气中的扩散模型,分析天然气从土壤扩散到大气后在土壤表层积聚的现象和规律。以天然气在土壤中泄漏扩散稳定后地面甲烷的浓度分布和流量为入口边界条件,研究地面甲烷质量流量、环境风速、建筑物高度对甲烷横向扩散距离和纵向扩散高度的影响。结果表明:气体在上升过程中,气团速度间断面会引起卷吸现象;随地面甲烷质量流量增加,扩散高度显著增加;随着环境风速增加,甲烷的纵向扩散高度逐渐降低,而甲烷的横向扩散距离随风速的变化近似呈线性增加关系;建筑物靠近泄漏位置的一侧会积聚大量的天然气,使建筑物两侧存在明显的浓度差,随着建筑物高度的增加,天然气扩散高度整体呈增高趋势,当建筑物高度较低时,天然气会越过建筑物顶部继续向上扩散,扩散高度反而随建筑物高度的增加而降低。  相似文献   

4.
运用计算流体动力学(CFD)理论,模拟了硫化氢气体泄漏事故,得到硫化氢泄漏10 min时,在不同风速和风向情况下扩散过程的运动特征与浓度分布规律,并以浓度场分布及变化特征为依据,分析了风速和建筑物对硫化氢扩散的影响规律。研究结果对认清重气扩散规律、事故预防及人员疏散有一定的指导意义。  相似文献   

5.
氢气储运是氢能利用的关键环节,管道输运作为最经济的氢能输送方式,其安全性至关重要,一旦管道发生泄漏将引发爆炸事故。通过建立管输氢气泄漏扩散模型,分析了氢气泄漏后的扩散浓度、趋势和峰值高度,研究了管输压力、泄漏点孔径、外界风速、障碍物高度、障碍物间距等因素对氢气扩散的影响规律。研究结果表明,随着泄漏点孔径增大,氢气扩散范围越广;高压管道的氢气扩散高度峰值更高;在竖直方向氢气扩散高度峰值与障碍物高度成正比;风速对氢气存在升力作用,影响气体泄漏扩散方向。  相似文献   

6.
利用工艺安全分析软件(DNV PHAST)模拟分析含硫化氢煤层气井井口的泄漏场景,对硫化氢泄漏速率、泄漏量、泄漏扩散分布、影响范围等事故后果进行定量计算和分析。结果表明:运用DNV PHAST软件模拟分析不同泄漏场景下,硫化氢泄漏的扩散浓度影响范围,并参照国家标准,提出硫化氢应急响应措施,可以最大程度的减少由于硫化氢泄漏扩散引起的连锁反应所造成的人员和经济损失。  相似文献   

7.
天然气管线泄漏扩散及危害区域分析   总被引:10,自引:3,他引:10  
对天然气扩散浓度进行研究,可以解决泄漏气体沿地面扩散所形成的危险区域预测问题,为管道运行和抢修提供安全保障,对于输气管线的风险后果定量分析具有重要的意义。为此,考虑到天然气泄漏扩散的特殊性,选取高斯模型作为扩散危害基本模型,给出了非正常泄漏状态下模型的修正函数。结合3种典型的泄漏扩散事故情景,模拟分析了天然气职业接触浓度限值和爆炸上、下限浓度所对应的扩散距离和危害区域面积;此外还对比分析了风速、泄漏孔径及泄漏时间等因素对扩散危害面积的影响。算例结果表明,管道发生连续泄漏时,危害区域的面积随风速的增大而减小,随泄漏孔径的增大而扩大。发生大规模瞬态泄漏时,在泄漏初期,人员产生不适症状的危害区域及爆炸危险区域都随时间的增加而逐渐扩大;随着时间的延长,泄漏气体不断被空气稀释而使得浓度降低,若时间足够长,危害区域将不再存在。  相似文献   

8.
为解决LNG储罐泄漏扩散模拟分析过程中存在计算和分析过程过于复杂的问题,通过选取适当的气体扩散模型,利用Matlab编写程序,对甲烷气体的扩散进行快速模拟计算,形成气体扩散浓度分布图,预测甲烷蒸汽在向下风向扩散的过程中形成爆炸危险区域,并模拟分析风速、地表粗糙度、泄漏速率等因素对LNG泄漏气体扩散影响。研究结果表明,当风速方向和泄漏源泄漏方向一致时,甲烷蒸汽扩散距离和危险区域面积随风速增大呈减小趋势;甲烷蒸汽在下风向扩散距离及危险区域面积随着地表粗糙度的增大而减小;甲烷蒸汽扩散距离和危险区域面积随泄漏速率的增大而增大。  相似文献   

9.
为研究泄漏孔径、泄漏点水深以及外部风速对海底输气管道泄漏后果的影响,以某海底输气管道为研究对象,选取两种泄漏孔径,两种泄漏水深,9种风速进行泄漏扩散的模拟计算。计算包含泄漏模拟、气体水中扩散计算及气体在空气中扩散的CFD模拟。最终得到各泄漏工况条件下可燃气体云团体积及影响范围。通过对数据进行归纳分析,得到气云扩散及影响距离的变化规律。结果表明,泄漏速率和泄漏水深会影响海底管道泄漏后气体到达海面的气体释放面积和气体垂直流速,进而影响气云在海面的扩散后果,风速会影响气云扩散的范围和浓度分布。泄漏孔径、泄漏点水深以及外部风速是进行海底管道泄漏扩散分析的关键因素,需要在分析中进行系统性考虑以全面反映海底管道的风险水平。当前分析方法能够较全面地分析以上关键因素对后果的影响,为现场抢险、应急响应等提供判据和输入,有助于完善应急准备分析和制定更加有针对性的应急处置方案。   相似文献   

10.
为分析天然气泄漏事故的危险性,以天然气净化分离器为研究对象,利用高斯烟羽模型描述天然气泄漏的运动扩散规律,运用VB编程和MATLAB语言开发了净化分离器泄漏扩散模拟软件,研究光照、风速、昼夜和泄漏压力等因素对泄漏后果的影响。研究表明:光照越强泄漏扩散范围越大,并且弱光照泄漏的危害大于强光照;泄漏扩散距离随风速的增大呈现先减小后增大的变化趋势,在风速逐渐增大的过程中,存在危险风速,此时泄漏物浓度最高;白昼泄漏的影响范围要远大于夜间,但夜间天然气的泄漏比白昼更具危险性。  相似文献   

11.
为评估高含硫化氢气体海上油气生产平台硫化氢泄漏风险,对硫化氢气体泄漏后质量浓度分布进行模拟计算,以指导硫化氢气体泄漏后果评估和个人防护装备的配置。在分析气体扩散分析理论公式的基础上,对海上油气生产平台硫化氢气体扩散模拟分析的场景选择、感受点选取、硫化氢气体的破坏标准和模拟结果的应用等硫化氢气体扩散的各重要影响因素进行讨论,并结合实际工程实例对工程实践中各影响因素的选择和考量进行讨论。  相似文献   

12.
介绍了SLAB重气泄漏扩散模型,并运用SLAB View软件模拟了某含硫气井发生井喷事故H2S云团的扩散过程和危害区域,得出了H2S云团在指定浓度平均时间下的影响范围,以及指定浓度H2S云团出现在最远距离的时间和最远下风向扩散距离。结果表明,SLAB View软件能方便、快速地模拟平坦地形下含硫天然气井喷泄漏扩散过程,预测事故泄漏扩散后果和影响范围。  相似文献   

13.
有限空间内可燃气体泄漏扩散容易引发危险事故,而对于有限空间障碍物存在时气体泄漏扩散规律的研究较少。为此,针对有限空间障碍物对可燃气体泄漏扩散的影响,采用雷诺平均的N-S方程,湍流模型以及无反应多组分输运方程,对障碍物影响下可燃气体泄漏扩散进行了数值模拟,并进一步分析了泄漏位置和障碍物高度对可燃气体泄漏扩散的影响。结果表明:障碍物对可燃气体扩散过程有阻碍作用;障碍物影响下不同位置泄漏扩散形成的浓度场不同,泄漏口与出口异侧,距离障碍物越近,房间内形成的爆炸区域越大;障碍物高度越高,有限空间内形成的爆炸区域越大,增大了危险事故发生的可能性。该模拟结果有助于室内燃气管道安全设计,可为制订室内可燃气体爆炸事故的预防措施提供参考。  相似文献   

14.
针对三高气田钻完井过程中硫化氢气体泄漏扩散和传感器检测问题,采用计算流体力学方法对井场泄漏的硫化氢气体在小范围内的分布进行模拟和分析,对气流与传感器入口夹角和气流速度对传感器输出值进行实验分析,从而优选传感器安装位置和安装方法。结果表明:在有风情况下,硫化氢气体在泄漏口小范围内主要分布在泄漏口下方向位置;根据硫化氢气体在气体中的扩散规律和不同检测点的检测环境,得出不同检测点传感器类型和安装高度。  相似文献   

15.
针对输气管道泄漏分析和后果分析中存在的随机性,以气体温度、起点压力、泄漏孔径、泄漏点距离起点位置、管输流量等作为泄漏分析中的随机参数,以泄漏速率、风速、大气温度、大气湿度等作为后果分析中的随机参数,基于拉丁超立方抽样方法,通过Kendall相关系数分析各参数对泄漏速率和后果的敏感程度,并结合Monte Carlo模拟和喷射火模型计算伤亡半径。结果表明,泄漏速率对泄漏孔径的敏感性最强,其次为管输流量,泄漏速率出现可能性最大的值为3 000 kg/s;当样本数量>1 000时,参数敏感性的排序结果不再发生改变;风速对热辐射强度的影响最大,大气湿度的影响最小;随着远离泄漏点,热辐射强度峰值和伤亡率不断减小,伤亡半径以管道为中心沿两侧对称分布。研究结果可为风险区域划分和事故分析提供实际参考。  相似文献   

16.
针对乡村散煤取暖造成的大气污染问题,国家出台了煤改气政策,但乡村燃气领域尚无设计规范。结合乡村建筑形式和管道敷设方式,考虑泄漏时间、位置、方向和风速等因素,建立管道泄漏数学模型并进行数值模拟,分析了各因素对天然气泄漏扩散的影响。结果表明:天然气泄漏达到稳定状态后,在泄漏口所在截面上,高空区域为主要的爆炸危险区域;水平泄漏和垂直于房屋墙壁的风场可在房屋间形成涡流,阻碍天然气扩散;随着风速增加,天然气的扩散速度先减后增。所得结论可为乡村燃气管道的设计以及管道泄漏的安全防护提供参考。  相似文献   

17.
与常规天然气管道高压输送不同,煤层气管道输送由于爆炸极限范围的限制,输送压力一般不是很高.考虑到煤层气的特性,根据煤层气的泄漏扩散模型,利用FLUENT软件对煤层气在管道中的泄漏进行数值模拟,得到了泄漏后煤层气的速度、各组分质量浓度的分布及安全区域图.结果表明,在同样高度,甲烷的质量浓度明显高于硫化氢的质量浓度;静风状态下,煤层气在大气中属于自由扩散,稳定后速度和质量浓度都大致呈对称分布;下风向的100 m以内是危险区域.  相似文献   

18.
目的探究多因素耦合下掺氢导致的天然气长输管道泄漏扩散规律。 方法以西气东输二线工程为研究对象,采用Fluent软件建立管道二维平面泄漏扩散模型,通过单因素和多因素耦合分析掺氢比、泄漏孔径、风速和大气温度对掺氢天然气泄漏扩散的影响。 结果随着掺氢比增加,甲烷扩散区域的质量分数和宽度减小,而氢气则相反;随着泄漏孔径增大,掺氢天然气扩散的质量分数和范围增加;随着风速增加,掺氢天然气泄漏后扩散的质量分数增加,且分布逐渐向下风向偏移,而扩散高度减小;大气温度对掺氢天然气泄漏扩散的影响不显著。不同因素对掺氢天然气管道泄漏扩散范围的影响程度为:泄漏孔径>风速>掺氢比>大气温度。 结论4种影响因素中,泄漏孔径对掺氢天然气管道泄漏扩散的影响程度最大,因此应重点防范掺氢天然气管道因腐蚀等因素引起的管道开裂、穿孔引起的泄漏。   相似文献   

19.
高含硫天然气管道在运行过程中由于腐蚀等原因经常会发生孔口泄漏事故,对周围人身安全和环境造成危害。利用CFD软件Fluent对有风状态下高含硫天然气管道发生孔口泄漏后CH4和H2S的扩散情况进行了数值模拟。结果表明,CH4受浮力影响向高空扩散趋势明显,其爆炸范围集中在泄漏口附近;H2S由于初始动量较大,在泄漏孔口附近会向高空扩散,但随着动量的减少和扩散距离的增加,在重力的作用下会逐渐降落到地面附近;对比3m/s和1m/s风速情况下CH4和H2S的扩散情况,在1m/s风速下CH4的爆炸范围会略有增加,高浓度H2S会达到更高的范围,且靠近泄漏口附近的地面浓度会更低。  相似文献   

20.
陈浩 《焊管》2023,46(5):44-49
为提高输气管道泄漏危害范围的预测精度,以便在管体泄漏发生时快速合理的设置警戒区域。通过控制变量法,利用ALOHA软件对输气管道泄漏事故进行动态模拟和后果趋势分析,并结合多元线性回归拟合影响因素与伤害距离的关系。结果表明,管道长度、管道压力的增大会使管道泄漏导致的危害范围增大,随着泄露孔径的增大,危害范围呈现先增大后减小的趋势,风速增大、地面粗糙度的增加,有利于减小泄漏导致的危害范围;多元线性回归的拟合精度较高,平均相对误差为2.15%;单因素分析表明,泄漏孔径、管道长度、管道压力、风速对泄漏导致的危害范围影响显著,而地面粗糙度对危害范围的影响不显著;通过在最不利条件下进行实地模拟,发现室内外的甲烷扩散体积分数超过了AEGL-1的极限值,说明居民区与管道的安全距离不够,应扩大安全距离或采取其他必要的防护措施。研究结果可为输气管道泄漏事故的有效预防和应急处理提供实际参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号