首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensitization mechanisms of Yb3+ to Tm3+ for the blue upconversion luminescence in fluorophosphate glass were studied. Two different mechanisms exist in the sensitization. One is the sequential sensitization that Tm3+ is excited from 3H6 to 1G4 through absorbing three photons transferred from Yb3+ one by one. Another is the cooperative sensitization that two Yb3+ ions form a couple cluster firstly, and then the couple cluster Yb3+ ions transfer their energy to Tm3+ and excite it to 1G4. With the increment of the concentration of Yb3+ ions, the sequential sensitization becomes weak and the cooperative sensitization becomes intense, and the transformation trend of sensitization mechanism with the increment of Yb3+ concentration can be clarified by the introduction of Tb3+ ions in the glass.  相似文献   

2.
Y2O3:Er3+,Yb3+ nanoparticles were synthesized using Pechini type sol-gel method and then characterized by XRD, TEM, SEM, Raman spectroscopy, and fluorescence spectrophotometer. Local temperature effect on upconversion luminescence intensities was theoretically analyzed and experimentally tested. These results indicate that a competition process between local temperature at luminescent spot and laser pump power density decides the development trend of upconversion luminescence intensity. Therefore, it can be concluded that the most intensive upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles can be achieved at a certain pump power density, which should be slightly below a given constant value (the corresponding threshold of temperature).  相似文献   

3.
Different crystal structure of TeO2 nanoparticles were used as the host materials to prepare the Er3+/Yb3+ ions co-doped upconversion luminescent materials. The TeO2 nanoparticles mainly kept the original morphology and phase after having been co-doped the Er3+/Yb3+ ions. All the as-prepared TeO2:Er3+/Yb3+ nanoparticles showed the green emissions (525 nm, 545 nm) and red emission (667 nm) under 980 nm excitation. The green emissions at 525 nm, 545 nm and red emission at 667 nm were attributed to the 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions, respectively. For the α-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles, three-photon process involved in the green (2H11/2 → 4I15/2) emission, while two-photon process involved in the green (4S3/24I15/2) and red (4F9/2 → 4I15/2) emissions. For the β-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles, two-photon process involved in the green (2H11/2 → 4I15/2), green (4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) emissions. It suggested that the crystal structure of TeO2 nanoparticles had an effect on transition processes of the Er3+/Yb3+ ions. The emission intensities of the α-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles and β-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles were much stronger than those of the (α + β)-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles.  相似文献   

4.
Inverse opal photonic crystals of Yb3+, Er3+ co-doped CaTiO3 (CaTiO3: Yb, Er) were prepared using self-assembled polystyrene templates combined with the infiltration of sol-gel precursor. The influence of the photonic band gap on upconversion emission of Er3+ has been investigated in the CaTiO3: Yb, Er inverse opals. Significant reduction of the upconversion emission was detected if the photonic band-gap overlaps with the Er3+ ions emission band.  相似文献   

5.
Emission properties of Ho3+ at 2.0 μm and the energy transfer mechanism between Yb3+, Er3+ and Ho3+ ions in fluorophosphate glasses are investigated. The measured emission spectra show that the 5I7 → 5I8 transition of Ho3+ upon 980 nm laser diode excitation is strong. Judd–Ofelt intensity parameters (Ωλ, λ = 2, 4, 6), spontaneous transition probability (Arad), radiative lifetime (τr), absorption cross section (σa), stimulated emission cross section (σe) and FWHM ×  for the transition of Ho3+: 5I7 → 5I8 are calculated and discussed. The obtained results show that the present Yb3+/Er3+/Ho3+ triply-doped fluorophosphate glass can be identified to be a promising material at 2.0 μm emission.  相似文献   

6.
In this paper, YLiF4 codoped with Tm3+ and Yb3+ ions was synthesized by hydrothermal method. Yb3+ concentration is fixed at 1.5%, and Tm3+ concentration is changed from 0.1 to 0.4%. Intense upconversion luminescence is observed when the samples are excited by 980 nm. The dependence of upconversion luminescence on Tm3+ concentrations is presented. The results show that upconversion luminescence increases with the Tm+ concentration and gets its peak at 0.3 mol%. Under the excitation of 980 nm, the blue emission of 479 nm and the red emission of 647 nm are both duo to two photons process, and the UV emission of 361 nm is attributed to the three photons process. We also analyse the upconversion mechanism and process.  相似文献   

7.
A high resolution luminescence study of NaLaF4: 1%Pr3+, 5%Yb3+ and NaLaF4: 1%Ce3+, 5%Yb3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr3+(3P0 → 1G4), Yb3+(2F7/2 → 2F5/2) energy transfer step takes place, significant Pr3+1G4 emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr3+ and Yb3+ can be given. In the case of NaLaF4: Ce3+, Yb3+ it is concluded that the observed Yb3+ emission upon Ce3+ 5d excitation is the result of a charge transfer process instead of down-conversion.  相似文献   

8.
Z.H. Zhu  M.J. Sha  M.K. Lei   《Thin solid films》2008,516(15):5075-5078
1 mol%Er3+–10 mol%Yb3+ codoped Al2O3 thin films have been prepared on thermally oxidized SiO2/Si(110) substrates by a dip-coating process in the non-aqueous sol–gel method from the hydrolysis of aluminum isopropoxide [Al(OC3H7)3] under isopropanol environment. Addition of N,N-dimethylformamide (DMF) as a drying control chemical additive (DCCA) into the sol suppresses formation of the cracks in the Er3+–Yb3+ codoped Al2O3 thin films when the rare-earth ion is doped with a high doping concentration. Homogeneous, smooth and crack-free Er3+–Yb3+ codoped Al2O3 thin films form at the conditions by a molar ratio of 1:1 for DMF:Al(OC3H7)3. A strong photoluminescence spectrum with a broadband extending from 1.400 to 1.700 µm centered at 1.533 µm is obtained for the Er3+–Yb3+ codoped Al2O3 thin films, which is unrelated to the addition of DMF. Controllable formation of the Er3+–Yb3+ codoped Al2O3 thin films may be explained by the fact that the DMF assisted the deprotonation process of Al–OH at the surfaces of gel particles, resulting in enhancement of the degree of polymerization of sols and improvement of the mechanical properties of gel thin films.  相似文献   

9.
A well oriented YVO4 single crystal, with 5% Yb3+ and 2% Tm3+ nominal doping, was investigated using the Raman and EPR techniques.The EPR measurements suggest that Yb3+ ions occupy eight-coordinated Y3+ sites forming bisdisphenoids of the D2d symmetry. An inhomogeneous distribution of rare-earth ions leads to a significant distortion of the local point symmetry (C1). It seems that strong dipole–dipole interactions between Yb3+ ions are responsible for the distortion. As a result, two types of ytterbium magnetic centers appear. They correspond to paired magnetic centers and distorted isolated paramagnetic centers that are strongly sensitive to the magnetic field directions and some imperfections of the crystal. Pair centers can be recorded through the rotation around the c-crystal axis, whereas isolated centers can be measured when the crystal is rotated around the a-crystal axis. With the increasing temperature, the ytterbium signal disappeared at about 23 K and a group of narrow lines became visible. These lines, observed in the range of 240–550 mT, correspond to the Gd3+ (S = 7/2) ions, doped to the structure unintentionally from the basic materials.  相似文献   

10.
Yb3+/Er3+ codoped BaGd2(MoO4)4 phosphor powders were prepared by the Sol-gel method and the upconversion luminescence properties were investigated in detail. Under 980 nm semiconductor laser excitation, BaGd2(MoO4)4:Yb3+,Er3+ phosphor exhibits green upconversion luminescence with peaks at 530 and 550 nm, which are due to the transitions of Er3+ (2H11/2) → Er3+ (4I15/2) and Er3+ (4S3/2) → Er3+ (4I15/2), respectively. Both of the two green emission lines are produced by populating Er3+ ions to the excited state through a two-photon process. By monitoring the intensities of the green upconversion luminescence, the optimum conditions for the Sol-gel synthesis were determined when the molar ratio of citric acid to total chelate metal cations was 2:1 and the sintering temperature was at 1073 K. The concentration quenching effect for Er3+ was found at the optimum doping concentration of 6 mol%, and the critical distance for the neighboring Er3+ was determined to be about 21.5 Å.  相似文献   

11.
Eu/Tb codoped transparent oxyfluoride borosilicate glass ceramics containing Sr2GdF7 nanocrystals were fabricated under a reductive atmosphere and the conversion of Eu3+ ions to Eu2+ ions was observed. The Sr2GdF7 nanocrystals with an average size of 32 nm were homogeneously precipitated in the oxyfluoride borosilicate glass matrix, which could be evidenced by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. The enhancement of photoluminescence emission intensity, reduction of the relative emission intensities between 5D0 → 7F2 and 5D0 → 7F1, and long fluorescence lifetimes of Eu2+, Eu3+, and Tb3+ ions revealed that more rare earth ions were partitioned into the low phonon energy environment Sr2GdF7 nanocrystals. Under ultraviolet excitation, pure and bright white light emission was obtained in the oxyfluoride borosilicate glass ceramic, which may be a potential blue, green and red-emitting phosphor for white LEDs.  相似文献   

12.
This paper reports an optical investigation of glass-ceramics formed by annealing glasses with compositions 50 GeO2-40 PbO-10 PbF2-x EuF3, x = [0.5; 1; 1.5; 2] and polycrystalline ceramics with composition 100 PbF2, y EuF3, with y = 5, 10, 15 and 20. For each material, the photoluminescence spectrum and the photoluminescence lifetimes of the 5D0, 5D1 and 5D2 Eu3+ levels are measured. Occurrence of Eu3+:β-PbF2 nanocrystallites in the glass-ceramics is confirmed and total ceramisation requires more than 10% of EuF3 with respect to PbF2 in the starting glass.In the Eu3+:β-PbF2 ceramics and glass-ceramics, Eu3+ ions replace Pb2+ in their regular cubic site, but they interact together to form dimers and higher nuclearity clusters. These two species are easily distinguished according to their photoluminescence decay rate. For the EuF3 rates investigated here, there are no isolated Eu3+ ions in the PbF2 lattice.A preliminary investigation of the optical properties of co-doped Gd3+:Eu3+:β-PbF2 ceramics was also performed. It shows that mixed Gd3+-Eu3+ dimers and clusters are formed, and that efficient Gd3+ → Eu3+ energy transfer occurs in these ceramics. The Pb2+ ions of the lattice may also be involved in the energy transfer process.  相似文献   

13.
The fluorescence properties of oxyfluoride glass ceramics containing nanosized LaF3 crystals with different ErF3 doping level were investigated. The spectroscopy analysis indicated that a dominant fraction of ErF3 had been incorporated into the crystal phase. Broad 1.5 μm emission spectra with full width at half maximum (FWHM) value ranging from about 40–100 nm were obtained, which increased accordingly with ErF3 doping level. Noteworthily, intense green and red upconversion emissions from samples with high ErF3 doping level were observed when excited even with a 30 mW diode laser at 976 nm. An overall increment of the upconversion emissions intensity, and, a relative increase in intensity of the red emission with respect to that of the green one were also identified with increasing ErF3 concentration. The possible upconversion mechanisms were proposed.  相似文献   

14.
Transparent oxyfluoride nano-glass–ceramics 90(SiO2)10(PbF2) co-doped with 0.3 Yb3+ and 0.1 Er3+ (mol%) have been prepared by thermal treatment of precursor sol–gel glasses. X-ray diffraction and high resolution transmission electron microscopy analysis pointed out a precipitation of cubic β-PbF2 nanocrystals of certain diameter in nano-glass–ceramics varying from 10 to 20 nm depending on heat treatment conditions. The incorporation of Yb3+ and Er3+ dopants in these nanocrystals has been confirmed by signatures of luminescence spectroscopy. Up-conversion luminescence pumped at 980 nm has been detected. Colour tuneability of up-conversion luminescence varying pump power has been analyzed in terms of standard chromaticity diagram. This tuneability opens applications for up-conversion phosphors and three-dimensional optical recording.  相似文献   

15.
Infrared to visible upconversion luminescence has been investigated in Er3+/Yb3+ co-doped CeO2 inverse opal. Under the excitation of 980 nm diode lasers, visible emissions centered at 525, 547, 561, 660 and 680 nm are observed, which are assigned to the Er3+ transitions of 2H11/2 → 4I15/2 (525 nm), 4S3/2 → 4I15/2 (547, 561 nm), 4F9/2 → 4I15/2 (660 and 680 nm), respectively. The effect of photonic band gap on the upconversion luminescence intensity was also obtained. Additionally, the upconversion luminescence mechanism was studied. The dependence of Er3+ upconversion emission intensity on pump power reveals that it is a two-photon excitation process.  相似文献   

16.
Transparent and uniform tellurite–phosphate glasses were prepared and the reason why the substitution of NaPO3 for P2O5 can eliminate the coloration of tellurite–phosphate was discussed. The result of TDA indicated that introducing NaPO3 into tellurite glasses can improve thermal stability of glass hosts. The compositional dependence of absorption cross-sections of 4I13/2, 4I11/2 and 2H11/2 level, emission cross-section of 4I13/2 level, host phonon energy, up-conversion and 1.5 μm optical emission intensity as well as and quantum yield for 4I13/2 level in PTEr glasses were investigated too. By analyzing obtained data, authors believe that tellurite–phosphate glasses can be used as potential host material for developing optical amplifiers.  相似文献   

17.
We demonstrate the upconversion-photoluminescence spectra of Er3+, Yb3+ and Li+ ions doped ZrO2 nanocrystals. By introducing Li+, emission intensities of single green and single red band increase by a factor of 1.93 and 1.65, respectively. Powder X-ray diffraction data and decreased slopes of the excitation power dependences on upconverted emission intensities give evidences that Li+ ions can tailor the local structure of host lattice and improve energy transfer processes from Yb3+ to Er3+, respectively.  相似文献   

18.
Yb2+ ion doped Ba5(PO4)3Cl phosphor was synthesized by solid state reaction. Four distinct absorption bands were observed in the Ultraviolet (UV) light region due to the electronic transitions of Yb2+ ion from 1S0 ground state to 2F5/2(t2g), 2F5/2(eg), 2F7/2(t2g), and 2F7/2(eg) excited states. The main emission wavelength of the phosphor was around 630 nm. The optimized Yb2+ ion concentration was 0.2 mol% (λexc. = 400 nm). The calculated critical distance was about 8.729 Å and the concentration quenching was observed above 0.2 mol% due to the electric dipole–dipole interaction.  相似文献   

19.
Manganese is a very important microelement performing a large number of biological functions in human body. We have detected by spectroscopic measurements manganese in mineral kyanite. In this paper we present laser-induced time-resolved luminescence and optical absorbance spectra of orange, Mn containing kyanite. It was proven the orange color is caused by Mn3+. Several luminescence lines and bands were found and ascribed to Mn4+ and Mn3+, emission centers. The spectroscopic technique can be utilized for detection of small amounts of manganese in minerals.  相似文献   

20.
Pure, 0.1, 0.5 and 1 mol% Tm-doped YAP single crystalline scintillators were grown by the μ-PD method. The XRD analysis confirmed the lattice constants decrease with the Tm concentration. In the transmittance measurement, the absorption bands due to the Tm3+ 4f-4f transitions were observed at 265, 360, 485, 690 and 800 nm and they were ascribed to the transition from the 3H6 ground state to its 1I6, 1D2, 1G4, 3F3 and 3H4 excited states, respectively. Strong emission peak due to the 1I6-3F4 transition of Tm3+ appeared at 350 nm under X-ray irradiation. The photoluminescence decay time constants related to this transition were evaluated to be from 15.3 to 17.3 μs and the scintillation decay time constants under gamma-ray excitation were estimated to be from 17.5 to 18.8 μs. The Tm 1% doped crystal exhibited the highest light yield of 15, 100 ± 1500 photons/MeV when excited by 137Cs gamma-ray radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号