首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 78 毫秒
1.
张拥军  陈艇 《计算机应用》2015,35(4):1179-1184
针对3GPP-LTE协议中多输入多输出(MIMO)均衡算法的高复杂度和高吞吐率问题,提出了一种面向软件无线电的并行MIMO均衡处理器,该处理器采用单指令流多数据流(SIMD)和超长指令字(VLIW)技术同时开发子载波间MIMO均衡和子载波内矩阵运算的并行性,并且每一个SIMD功能单元能够支持16 bit定点和20 bit伪浮点复数向量运算和矩阵运算,满足不同天线配置的MIMO均衡算法对处理精度、延迟和功耗的要求。实验结果表明,MIMO均衡处理器的4×4矩阵逆运算吞吐率达到了95 MInversion/s,满足3GPP-LTE协议的要求,并且其灵活可编程性和可配置性能够支持不同的均衡算法。  相似文献   

2.
As an effective approach for multi-input multi-output regression estimation problems, a multi-dimensional support vector regression (SVR), named M-SVR, is generally capable of obtaining better predictions than applying a conventional support vector machine (SVM) independently for each output dimension. However, although there are many generalization error bounds for conventional SVMs, all of them cannot be directly applied to M-SVR. In this paper, a new leave-one-out (LOO) error estimate for M-SVR is derived firstly through a virtual LOO cross-validation procedure. This LOO error estimate can be straightway calculated once a training process ended with less computational complexity than traditional LOO method. Based on this LOO estimate, a new model selection methods for M-SVR based on multi-objective optimization strategy is further proposed in this paper. Experiments on toy noisy function regression and practical engineering data set, that is, dynamic load identification on cylinder vibration system, are both conducted, demonstrating comparable results of the proposed method in terms of generalization performance and computational cost.  相似文献   

3.
目前的辨识方法一般需要在系统输入端加入激励信号,而且多输入多输出系统的在线辨识仍很困难。本文提出一种基于牛顿迭代法的多输入、多输出对象模型迭代辨识方法,模型参数更新的依据是使模型预测输出与全部采样时刻的对象实际输出之间的均方差递减,直到收敛。这种基于全局数据迭代的辨识方法可进行闭环辨识,无需外加激励信号,适用于多输入多输出对象的在线辨识。对一个两输入、两输出对象模型的仿真研究和某电厂300MW机组负荷被控对象的计算结果表明,辨识效果令人满意。  相似文献   

4.
An internal model-based neural network control is proposed for unknown non-affine discrete-time multi-input multi-output (MIMO) processes in nonlinear state space form under model mismatch and disturbances. Based on the neural state-space model built for an unknown nonlinear MIMO state space process, an approximate internal model and approximate decoupling controllers are derived simultaneously. Thus, the learning of the inverse process dynamics is not required. A neural network model-based extended Kalman observer is used to estimate the states of a nonlinear process as not all states are accessible. The proposed neural internal model control can work for open-loop unstable processes with its closed-loop stability derived analytically. The application to a distributed thermal process shows the effectiveness of the proposed approach for suppressing nonlinear coupling and external disturbances and its feasibility for the control of unknown non-affine nonlinear discrete-time MIMO state space processes.  相似文献   

5.
This paper develops a multi-innovation stochastic gradient (MISG) algorithm for multi-input multi-output systems by expanding the innovation vector to an innovation matrix. The convergence analysis shows that the parameter estimates by the MISG algorithm consistently converge to the true parameters under the persistent excitation condition. The MISG algorithm uses not only the current innovation but also the past innovation at each iteration and repeatedly utilizes the available input–output data, thus the parameter estimation accuracy can be improved. The simulation example confirms the theoretical results.  相似文献   

6.
A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.  相似文献   

7.
多输入/多输出系统动态矩阵控制鲁棒稳定性   总被引:2,自引:0,他引:2  
研究了基于脉冲响应模型的动态矩阵预测控制(DMC)算法,针对多输入、多输出(MIMO)系统脉冲响应模型的特点,利用脉冲响应系数误差矩阵范数平方和定义预测模型的模型误差,以线性矩阵不等式(LMI)的形式提出了DMC闭环鲁棒稳定充要条件,将DMC算法闭环稳定问题转换为一类线性矩阵不等式的可解问题.并且研究了模型误差与闭环系统稳定性之间的关系,给出了保证系统稳定条件下模型误差界的求取方法,通过求解一个线性矩阵不等式约束的凸优化问题得到保证闭环系统稳定的误差界.最后,利用算例对本文方法的有效性进行了验证.  相似文献   

8.
Designing minimum possible order (minimal) disturbance-decoupled proper functional observers for multi-input multi-output (MIMO) linear time-invariant (LTI) systems is studied. It is not necessary that a minimum-order unknown-input functional observer (UIFO) exists in our proposed design procedure. If the minimum-order observer cannot be attained, the observer's order is increased sequentially through a recursive algorithm, so that the minimal order UIFO can be obtained. To the best of our knowledge, this is the first time that this specific problem is addressed. It is assumed that the system is unknown-input functional detectable, which is the least requirement for the existence of a stable UIFO. This condition also is a certificate for the convergence of our observer's order-increase algorithm. Two methodologies are demonstrated to solve the observer design equations. The second presented scheme, is a new design method that based on our observations has a better numerical performance than the first conventional one. Numerical examples and simulation results in the MATLAB/Simulink environment describe the overall observer design procedure, and highlight the efficacy of our new methodology to solve the observer equations in comparison to the conventional one.  相似文献   

9.
In this paper, robust adaptive sliding mode tracking control for discrete-time multi-input multi-output systems with unknown parameters and disturbance is considered. The robust tracking controller is comprised of adaptive control and sliding mode control design. Bounded motion of the system around the sliding surface and stability of the global system in the sense that all signals remain bounded are guaranteed. If the disturbance and the reference signal are slowly varying with respect to the sampling frequency, the proposed sliding mode controller can reject the disturbance and output tracking can be approximately achieved. Simulation results are presented to illustrate the proposed approach.  相似文献   

10.
K. Ramar  K. K. Appukuttan 《Automatica》1991,27(6):1061-1062
In this paper the problem of pole assignment using constant gain output feedback is studied for MIMO system with system order n > m + l − 1, where m and l are the number of inputs and outputs, respectively. A new procedure is presented to design a constant gain output feedback matrix which assigns (m + l − 2) poles exactly to the desired locations and shifts all the unassigned poles to suitable locations using root locus techniques.  相似文献   

11.
In this article, the problem of state observer design for a class of multi-input multi-output nonlinear systems is considered. Via state transformation and the constructive use of a Lyapunov function, the new observer design approach is addressed by introducing a parameter ? in the observer. Some sufficient conditions are given which guarantee the estimation error to asymptotically converge to zero under adaptive conditions. An example is included to illustrate the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号