首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Ceramics International》2020,46(14):22024-22029
Mg1-xCoxMoO4 (x = 0.01–0.15) ceramics were prepared by traditional solid-state methods. The phase composition, crystalline structure, micromorphology, and microwave dielectric properties of Mg1-xCoxMoO4 ceramics were comprehensively studied. Mg1-xCoxMoO4 ceramics present monoclinic wolframite structures from x = 0.01 to x = 0.15 with Co occupying the Mg-site. With the addition of Co2+, εr of Mg1-xCoxMoO4 ceramics increase. Q × f is maximal at 5 mol% Co2+ content. The Mg0.95Co0.05MoO4 ceramic exhibits an optimal microwave dielectric property: εr = 7, Q × f = 59247 GHz, τf = −68 ppm/°C. The Q × f values increase by 20% compared with the pure MgMoO4 ceramics (~49149 GHz). Doping Co2+ effectively promotes the densification of ceramics and increases εr and Q × f. However, when the Co content exceeds 5 mol%, the decreased packing fraction and disorder distribution of ions contribute to the increase in dielectric losses. The correlations between Co2+ substitution and wolframite structure have been discussed by Raman spectroscopy, FT-IR spectroscopy and Rietveld refinement.  相似文献   

2.
《Ceramics International》2017,43(2):2246-2251
Ultrahigh-Q Li2(1+x)Mg3ZrO6 microwave dielectric ceramics were successfully prepared by means of atmosphere-controlled sintering through simultaneously adopting double crucibles and sacrificial powder. This technique played an effective role in suppressing the lithium volatilization and further promoting the formation of the liquid phase, as evidenced by the X-ray diffraction, microstructural observation and the density measurement. Both dense and even microstructure, and the suppression of detrimental secondary phases contributed to low-loss microwave dielectric ceramics with Q×f values of 150,000–300,000 GHz. Particularly, desirable microwave dielectric properties of εr=12.8, Q×f=307,319 GHz (@9.88 GHz), and τf=−35 ppm/°C were achieved in the x=0.06 sample as sintered at 1275 °C for 6 h.  相似文献   

3.
《Ceramics International》2021,47(22):31375-31382
Novel Ce2(MoO4)2(Mo2O7) (CMO) ceramics were prepared by a conventional solid-state method, and the microwave dielectric properties were investigated. X-ray diffraction results illustrated that pure Ce2(MoO4)2(Mo2O7) structure formed upon sintering at 600 °C-725 °C. [CeO7], [CeO8], [MoO4], and [MoO6] polyhedra were connected to form a three-dimensional structure of CMO ceramics. Analysis based on chemical bond theory indicated that the Mo–O bond critically affected the ceramics’ performance. Furthermore, infrared-reflectivity spectra analysis revealed that the primary polarisation contribution was from ionic polarisation. Notably, the optimum microwave dielectric properties of εr = 10.69, Q·f = 49,440 GHz (@ 9.29 GHz), and τf = −30.4 ppm/°C were obtained in CMO ceramics sintered at 700 °C.  相似文献   

4.
In this study, the novel temperature-stable (1-x)Ag2MoO4-xAg0.5Bi0.5MoO4 microwave dielectric ceramics were prepared by a modified solid-state reaction method. The phase composition, microstructures and microwave dielectric properties of the (1-x)Ag2MoO4-xAg0.5Bi0.5MoO4 ceramics were investigated. All the compounds can be sintered well at ultra-low temperatures (<540 °C). The XRD and SEM analysis indicate that the Ag2MoO4 and the Ag0.5Bi0.5MoO4 can coexist with each other. When x = 0.65, the ceramics exhibit the best microwave dielectric properties with a relative permittivity of 23.9, a Q × f value of 16,200 GHz (at 7.3 GHz) and a near-zero TCF value of -2.4 ppm/°C at 520 °C. The results indicate that temperature-stable (1-x)Ag2MoO4-xAg0.5Bi0.5MoO4 ceramics are promising candidates for low temperature co-fired ceramics (LTCC) applications.  相似文献   

5.
The Mg3(VO4)2xBa3(VO4)2 ceramics have been investigated to obtain a low-temperature co-fired ceramic (LTCC). The highest quality factor (Qf) of approximately 114,000 GHz was obtained when the ceramic with x = 0.2 was sintered at 950 °C for 5 h in air. The temperature coefficient of resonant frequency (τf) of the ceramics sintered at 1025 °C varied from −90 to 60 ppm/°C as the amount of xBa3(VO4)2 increased, and was a near zero value in the sample obtained at x = 0.5 where the dielectric constant (ɛr) and the Qf values were approximately 12 and 55,000 GHz, respectively. In order to reduce the sintering temperatures of Mg3(VO4)2xBa3(VO4)2 ceramics, the effects of Li2CO3 addition as a sintering aid on the microwave dielectric properties of Mg3(VO4)2–0.5Ba3(VO4)2 ceramics were also characterized in this study. The Li2CO3 addition was effective in reducing the sintering temperature without detrimental effects on the Qf values of the ceramics. One result: the microwave dielectric properties of Mg3(VO4)2–0.5Ba3(VO4)2 with 0.0625 wt%-doped Li2CO3 ceramic, which was sintered at 950 °C for 5 h in air, has a ɛr value of 13, a Qf value of 74,000 GHz, and a τf value of −6 ppm/°C.  相似文献   

6.
《Ceramics International》2022,48(8):11056-11063
Ce2[Zr1?x(Ca1/3Sb2/3)x]3(MoO4)9 (CZ1?x(CS)xM) (x = 0.02–0.10) ceramics were prepared by the conventional solid-state reaction method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips–Van Vechten–Levine (P–V–L) theory. Phase composition and microstructures were evaluated by scanning electron microscopy and X-ray diffraction patterns. Lattice parameters were obtained by Rietveld refinements based on XRD data. Excellent properties for Ce2[Zr0.96(Ca1/3Sb2/3)0.04]3(MoO4)9 ceramic sintered at 775 °C: εr = 10.68, Q×f = 85,336 GHz and τf = ?7.58 ppm/°C were achieved.  相似文献   

7.
0.9(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–0.1(Ca0.8Sr0.2)TiO3 (MZTS–CST) ceramics were prepared by a conventional solid‐state route. The MZTS–CST ceramics sintered at 1325°C exhibited εr = 18.2, Q × f = 49 120 GHz (at 8.1 GHz), and τf = 15 ppm/°C. The effects of LiF–Fe2O3–V2O5 (LFV) addition on the sinterability, phase composition, microstructure, and microwave dielectric properties of MZTS–CST were investigated. Eutectic liquid phases 0.12CaF2/0.28MgF2/0.6LiF and MgV2O6 were developed, which lowered the sintering temperature of MZTS–CST ceramics from 1325°C to 950°C. X‐ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS) analysis revealed that MZTS and CST coexisted in the sintered ceramics. Secondary phase Ca5Mg4(VO4)6 as well as residual liquid phase affected the microwave dielectric properties of MZTS–CST composite ceramics. Typically, the MZTS–CST–5.3LFV composite ceramics sintered at 950°C showed excellent microwave dielectric properties: εr = 16.3, Q × f = 30 790 GHz (at 8.3 GHz), and τf = ?10 ppm/°C.  相似文献   

8.
A series of temperature‐stable microwave dielectric ceramics, (1?x)(Na0.5La0.5)MoO4x(Na0.5Bi0.5)MoO4 (0.0 ≤ x ≤ 1.0) were prepared by using solid‐state reaction. All specimens can be well sintered at temperature of 580°C–680°C. Sintering behavior, phase composition, microstructures, and microwave dielectric properties of the ceramics were investigated. X‐ray diffraction results indicated that tetragonal scheelite solid solution was formed. Microwave dielectric properties showed that permittivity (εr) and temperature coefficient of resonant frequency (τf) were increased gradually, while quality factor (Q × f) values were decreased, at the x value was increased. The 0.45(Na0.5La0.5)MoO4–0.55(Na0.5Bi0.5)MoO4 ceramic sintered at 640°C with a relative permittivity of 23.1, a Q × f values of 17 500 GHz (at 9 GHz) and a near zero τf value of 0.28 ppm/°C. Far‐infrared spectra (50–1000 cm?1) study showed that complex dielectric spectra were in good agreement with the measured microwave permittivity and dielectric losses.  相似文献   

9.
Novel high quality factor microwave dielectric ceramics (1?x)ZrTiO4?x(Mg1/3Nb2/3)TiO4 (0.325≤x≤0.4) and (ZrTi)1?y(Mg1/3Nb2/3)yO4 (0.2≤y≤0.5) with the addition of 0.5 wt% MnCO3 in the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system were prepared, using solid‐state reaction method. The relationship between the structure and microwave dielectric properties of the ceramics was studied. The XRD patterns of the sintered samples reveal the main phase belonged to α‐PbO2‐type structure. Raman spectroscopy and infrared reflectivity (IR) spectra were employed to evaluate phonon modes of ceramics. The 0.65ZrTiO4?0.35(Mg1/3Nb2/3)TiO4?0.5 wt% MnCO3 ceramic can be well densified at 1240°C for 2 hours and exhibits good microwave dielectric properties with a relative permittivity (εr) of 42.5, a quality factor (Q×f) value of 43 520 GHz (at 5.9 Ghz) and temperature coefficient of resonant frequency (τf) value of ?5ppm/°C. Furthermore, the (ZrTi)0.7(Mg1/3Nb2/3)0.3O4?0.5 wt% MnCO3 ceramic sintered at 1260°C for 2 hours possesses a εr of 31.8, a Q×f value of 35 640 GHz (at 6.3 GHz) and a near zero τf value of ?5.9 ppm/°C. The results demonstrated that the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system with excellent properties was a promising material for microwave electronic device applications.  相似文献   

10.
Low temperature sintered Li8MgxTi3O9+xF2 microwave dielectric ceramics with x = 2−7 were developed based on a newly designed pseudo ternary phase diagram of the Li2TiO3–MgO–LiF system. Dense solid solution ceramics (of relative density >96 %) with cubic rock-salt structure, accompanied by a small amount of secondary phase MgO, were obtained in the temperature range of 800−925 °C. With increasing Mg2+ content, the value of εr decreased, whereas that of τf remained nearly constant, and the Q × f increased to a maximum at x = 5. The Li8Mg5Ti3O14F2 ceramic sintered at 875 °C exhibited superior microwave dielectric properties with εr = 16.8, Q × f = 119,700 GHz, and τf = −41.6 ppm/°C. The good compatibility with Ag electrodes highlights the promising prospects of this ceramic in low-temperature co-fired ceramic technology. Furthermore, a dielectric resonator antenna fabricated based on a Li8Mg5Ti3O14F2 ceramic exhibited an outstanding S11 of −34.7 dB and a broad bandwidth of 360 MHz at the desired resonant frequency of 5.98 GHz.  相似文献   

11.
A series of microwave dielectric ceramics in the compositions of K2Mo2O7, K2Mo3O10, and K2Mo4O13 in K2O–MoO3 binary system with ultra low sintering temperatures were prepared using the solid‐state reaction method. Their synthesis, phase composition, compatibility with metal electrodes, microstructures, and microwave dielectric properties were investigated. The K2Mo2O7 ceramic sintered at 460°C with a triclinic structure has a relative permittivity of 7.5, a × f value of 22 000 GHz, and a τf value of ?63 ppm/°C. The X‐ray diffraction patterns indicate that K2Mo2O7 does not react with Ag and Al electrodes at the co‐fired temperatures. The K2Mo3O10 ceramic can be sintered well at 520°C with a relative permittivity of 5.6, a × f value of 35 830 GHz, and a τf value of ?92 ppm/°C. It has compatibility with Ag electrode. The K2Mo4O13 ceramic sintered at 540°C possesses good microwave dielectric properties with a relative permittivity of 6.8, a Q × f value of 39 290 GHz and a τf value of ?67 ppm/°C and it is compatible with Al electrode. For K2Mo2O7 and K2Mo4O13, it is found that the grain sizes and the number of grain boundaries play an important role in the dielectric loss. From this study, it can be seen that the three ceramics in K2O–MoO3 system have good microwave dielectric properties, ultra‐low sintering temperatures, non‐toxic, and low‐cost characteristics. So they can be potentially applied to ultra‐LTCC devices.  相似文献   

12.
Structure, sintering behavior and microwave dielectric properties of ceramics have been investigated by x-ray powder diffraction (XRD) and scanning electron microscopy (SEM) in this paper. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 6–11 GHz. The sintering temperature and microwave dielectric properties could be successfully tuned in a wide window simultaneously by adjusting the A–O bond characteristics. The sintering temperature of CaWO4 was successfully reduced from 1100 °C to about 950 °C by BiVO4 addition. Approximately 95%–96% theoretical density could be obtained after sintering at 950 °C for 2 h. All samples exhibit single Scheelite structure (I41/a) phase. The dielectric constant increased, whereas the Q×f value decreased, with the increase of x. The τf value changed from negative to positive with the increases of x. Combined excellent microwave dielectric properties with εr=22. 1, Q×f=16,730 GHz and τf=2.39 ppm/°C could be obtained after sintered at the 950 °C for 2 h for x=0.3 compositions.  相似文献   

13.
《Ceramics International》2023,49(2):1997-2006
The zero resonant frequency temperature coefficient (τf) of microwave dielectric ceramics (MWDCs) at high and low temperature have attracted great attention in the development of microwave communication equipment. In this work, the Mg2TiO4–MgTiO3–CaTiO3 (MMC) ceramics with meeting the application requirements of 5G communication were prepared by traditional solid-phase sintering after investigating the relationship among phase compositions of xMg2TiO4-(0.931-x)MgTiO3-0.069CaTiO3 and 0.34Mg2TiO4-0.591MgTiO3-yCaTiO3, sintering process, and dielectric properties in detail. The results show that the dielectric properties of MMC ceramics are strongly affected by the phase relative contents of MgTiO3, Mg2TiO4 and CaTiO3. For instance, MMC ceramics with approximate τf = 0 is contributed by mutual compensation of Mg2TiO4 and MgTiO3, in which the Mg2TiO4 phase plays an important role in decreasing the τf value; and the increase of CaTiO3 will greatly increase the εr value for MMC ceramics, while has a negative effect in the Q × f value. After three-phase regulation, the 0.32Mg2TiO4-0.611MgTiO3-0.069CaTiO3 microwave dielectric ceramic has a better dielectric temperature stability, associated with dielectric properties of εr = 19.7, Q × f = 55,400 GHz (at 8.43 GHz), τf- = 4.5 ppm/°C (?40 °C–25 °C), and τf+ = ?5.1 ppm/°C (25 °C–90 °C).  相似文献   

14.
《Ceramics International》2023,49(7):10871-10880
Trilayer architectures were designed and investigated to further improve the microwave dielectric properties of the Ba(Mg1/3Nb2/3)O3 (BMN) – Mg4Nb2O9 (MN) system, namely, to achieve temperature stability while maintaining high-Q. The calculated phase fractions in randomly distributed (1-x)BMN-xMN ceramics deviated from the designed composition (where the composition with x = 0.045, 0.056, 0.125 and 0.98 was respectively referred to as S1, S2, S3 and MN'), thus allowing it difficult to obtain near-zero τf as expected. In densification studies, doping a little MN was shown to effectively promote the sintering of BMN and provide the possibility for layer-cofired optimization. Fortunately, undesired differences in composition and performance could be suppressed with the weakened ion diffusion occurring at narrow interfaces with a width of ~2.5 μm in the S1/MN'/S1 trilayer architecture. Considering the influence of cofired compatibility and stress of dielectric layers, the compositionally optimized S3/MN'/S3 ceramics sintered at 1340 °C exhibited excellent microwave dielectric properties of εr = 21.95, Q × f = 110,482 GHz (f0 = 6.870 GHz), and τf = 0.965 ppm/°C. Moreover, the dielectric response mechanism of layered ceramics was clarified by establishing the relationship between the layered architecture, dielectric properties and electric field distribution using the finite element method and high-frequency structure simulator (HFSS). This suggests that layered architectures like S1-3/MN'/S1-3 could effectively compensate for the dielectric properties and hold a promising application prospect of 5G wireless communication.  相似文献   

15.
Dense (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 ceramics were synthesized via solid-state reaction. The crystal structure and microwave dielectric properties of the ceramics were systematically investigated. Rietveld refinement revealed that when x ≤ 0.2, the ceramics had a rhombohedral structure with an R-3c space group. When x ≥ 0.5, the ceramics had an orthorhombic structure with a Pbnm space group. Selected area electron diffraction and Raman spectroscopy analyses proved that the microwave dielectric ceramics had a B-site order, which accounted for the great improvement in microwave dielectric properties. The content of oxygen vacancies was identified through X-ray photoelectron spectroscopy, and the change rule of Q × f was closely related to oxygen vacancy content. The perturbation of A-site cations had an important influence on dielectric constant. Specifically, with the increase in Ti4+ content, the perturbation effect of the A-site cations was enhanced and dielectric constant increased. When x = 0.65, the temperature coefficient of resonant frequency of the (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 microwave dielectric ceramics was near zero. The optimal microwave dielectric properties of 0.35LaAl0.9(Mg0.5Ti0.5)0.1O3–0.65CaTiO3 were εr = 44.6, Q × f = 32,057 GHz, and τf = +2 ppm/°C.  相似文献   

16.
Herein, the x(NaBi)0.5MoO4-(1-x)Bi2/3MoO4 (xNBM-(1-x)BMO, x = 0.2 ∼ 0.8) microwave dielectric ceramics with low sintering temperatures were prepared via the traditional solid-state method to adjust the τf value and dielectric constant. The crystal structure was determined using X-Ray diffraction and Raman spectroscopy, the microstructure was investigated using scanning electron micrograph and energy disperse spectroscopy, and the dielectric properties were studied using a network analyser and infrared spectroscopy. For the xNBM-(1-x)BMO composite ceramics, the (NaBi)0.5MoO4 tetragonal phase coexisted with the Bi2/3MoO4 monoclinic phase. With the rise of x value, the permittivity increased from 23.7–29.8, and the τf value shifited from -53.3 ppm/°C to -13.7 ppm/°C. The 0.8NBM-0.2BMO ceramic sintered at 680 °C possessed excellent microwave dielectric properties with a εr = 29.8 (6.7 GHz), a Qf = 11,800 GHz, and a τf = -13.7 ppm/°C. These results made the xNBM-(1-x)BMO composite ceramics great candidates in low temperature co-fired ceramics technology.  相似文献   

17.
《Ceramics International》2022,48(14):20245-20250
There has been extensive research on microwave dielectric materials considering their application in 5G and 6G communication technologies. In this study, the sintering temperature range of Mg2TiO4–CeO2 (MT-C) ceramics was broadened using a composite of CeO2 and Mg2TiO4 ceramics, and their microwave dielectric performance was stabilized. Low-loss MT-C composite ceramics were prepared using the solid-phase reaction method, and their microwave dielectric properties, microscopic morphologies, and phase structures were investigated. The proposed MT-C ceramics contained Mg2TiO4 and CeO2 phases; their average grain size was maintained at 2–4 μm in the sintering temperature range of 1275–1425 °C, and the samples were uniformly dense without porosity. The cross-distribution of Mg2TiO4 and CeO2 grains in the samples inhibited the growth of ceramic grains, providing uniform and dense surfaces. The dielectric loss of MT-C ceramics remained constant in the temperature range of 1300–1425 °C at 9 × 10?4 (8.45 ≤ f ≤ 8.75 GHz). As opposed to the base material, MT-C ceramics are advantageous owing to their wide sintering temperature range and the stable microwave dielectric properties, and there are suitable substrate materials for further industrial applications.  相似文献   

18.
Using a conventional solid‐state reaction Ca5A4(VO4)6 (A2+ = Mg, Zn) ceramics were prepared and their microwave dielectric properties were investigated for the first time. X‐ray diffraction revealed the formation of pure‐phase ceramics with a cubic garnet structure for both samples. Two promising ceramics Ca5Zn4(VO4)6 and Ca5Mg4(VO4)6 sintered at 725°C and 800°C were found to possess good microwave dielectric properties: εr = 11.7 and 9.2, Q × f = 49 400 GHz (at 9.7 GHz) and 53 300 GHz (at 10.6 GHz), and τf = ?83 and ?50 ppm/°C, respectively.  相似文献   

19.
Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 GHz@14.7 GHz (x = 0) to 150,500 GHz@14.5 GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, τf = ?3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, τf = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies.  相似文献   

20.
Microwave dielectric ceramic powder of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 (MCT) has been prepared by solid-state reaction method through single-step calcination at 1150 °C. The green bodies prepared from the calcined powder have been sintered by conventional, susceptor-aided, and hybrid microwave sintering techniques followed by annealing. XRD of calcined and sintered ceramics show (Mg,Zn)TiO3 as a major phase with CaTiO3 as a minor secondary phase. Fractographs of fired ceramics obtained by SEM show similar features in conventional and hybrid microwave types of sintering. Microwave dielectric properties such as relative permittivity(εr), temperature coefficient of resonant frequency(τf), and unloaded quality factors (Qu) for conventional sintered at 1325 °C for 4 h are—εr~19.8, τf< –6 ppm/°C and Qu.f 69,600 GHz at 6 GHz. Ceramics obtained through susceptor-aided microwave sintering at 1325 °C for 4 h show poor fired density. But ceramics got by microwave-hybrid sintering (resistive + microwave) at the same temperature show εr~20.6, Qu.f~81,600 GHz at 6 GHz and τf~?6.9 ppm/°C. The effect of hybrid microwave sintering on the dielectric properties of MCT ceramics is found to be more subtle than microstructural.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号