首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to make carbon/carbon composites suitable for application in gas turbine engine, it is necessary to develop environmental barrier coatings (EBCs) to protect them from reacting with water vapor. In our previous work, a novel high-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7 ((5RE0.2)2Si2O7) has been developed and verified as a promising candidate for EBCs. In this work, the (5RE0.2)2Si2O7 coating was synthesized on the surface of SiC coated C/C composites by supersonic atmospheric plasma spraying method. The protective performance and mechanism of this coating under high temperature water vapor environment was explored in detail. Results showed that the weight change of the sample coated with (5RE0.2)2Si2O7 was only 0.2% after corrosion for 100 h at 1500 ºC, which proved that (5RE0.2)2Si2O7 coating could significantly improve the resistance of C/C composites against water vapor corrosion. This work may provide theoretical basis for the design and application of high-entropy rare-earth silicates as EBCs.  相似文献   

2.
Single phase (Lu0.2Yb0.2Er0.2Y0.2Gd0.2)PO4 was synthesized, and its thermal properties and CMAS resistance were investigated to explore its potential as an environmental barrier coating (EBC) candidate. The high entropy phosphate (Lu0.2Yb0.2Er0.2Y0.2Gd0.2)PO4 displays a lower thermal conductivity (2.86 W m−1 K−1 at 1250 K) than all the single component xenotime phase rare-earth phosphates. Interaction of (Lu0.2Yb0.2Er0.2Y0.2Gd0.2)PO4 pellets with CMAS at 1300 °C led to the formation of a dense and uniformed Ca8MgRE(PO4)7 reaction layer, which halted the CMAS penetration into the bulk pellet. At 1400 and 1500 °C the (Lu0.2Yb0.2Er0.2Y0.2Gd0.2)PO4-CMAS corrosion showed CMAS penetrating beyond the reaction layer into the bulk pellet via the grain boundaries, and SiO2 precipitates remaining at the pellet surface. The effects of duration, temperature, and compositions on the resistance against CMAS corrosion are discussed within the context of optimizing materials design and performance of high entropy rare-earth phosphates as candidates for advanced EBC applications.  相似文献   

3.
Rare-earth monosilicate (RE2SiO5) have been considered to be a promising material for the environmental barrier coating because of their superior thermal and mechanical properties. However, the water vapor corrosion resistance of single-component RE-silicate materials, such as Y2SiO5, should be further improved. The high-entropy design is one of the most suitable methods to enhance the corrosion resistance for single-component RE-silicate materials. In this work, the multicomponent RE-silicate ((Lu0.25Yb0.25Er0.25Y0.25)2SiO5, (4HES)) and single-component RE-silicate (Y2SiO5) coatings were investigated with regard to its water vapor corrosion behaviors at 1350 °C for 300 h. A thinner and denser corrosion layer was generated in the 4HES coating, indicating that the 4HES coating possessed better corrosion resistance than the Y2SiO5 coating. The improved corrosion resistance is attributed to the better hydrophobic property as well as the more stable crystal structure of the rare-earth oxide and 4HES phase which was resulted from the high-entropy design.  相似文献   

4.
《Ceramics International》2021,47(22):31625-31637
Experimental investigations of Yb2Si2O7 pellet exposed to Calcium-Ferrum-Alumina-Silicate (CFAS) at 1400 °C in ambient air were carried out to reveal corrosion reaction between molten silicate deposit and Yb2Si2O7. Phase transformation, microstructure evolution and reaction mechanism were evaluated. Results indicated that the corrosion process was accompanied by the infiltration of CFAS melt, the dissolution of Yb2Si2O7 and the reprecipitation of Yb2Si2O7 and Ca2Yb8(SiO4)6O2 apatite as reaction product. The formation of apatite decreased the concentration of Ca2+ in the melt. After CFAS exposure at 1400 °C for 30 h, the thickness of the apatite layer stopped increasing due to insufficient Ca2+ content, and remained at about 115.4 μm. However, the infiltration depth of CFAS melt increased with the extending corrosion duration and increasing deposit content. And the infiltration rate was preliminarily found to first decrease and then increase with time. Most of the residual CFAS were crystallized into garnet (Ca3Fe2(SiO4)3 and Yb3Fe5O12) and mayerite (Ca12Al14O33), while a small volume of amorphous glass was dispersed among the garnet and mayerite grains.  相似文献   

5.
We report a double-ceramic-layer (DCL) thermal barrier coating (TBC) with high-entropy rare-earth zirconate (HE-REZ) as the top layer and yttria stabilized zirconia (YSZ) as the inner layer sprayed on Ni-based superalloy by atmospheric plasma spraying. La2Zr2O7 (LZ) was selected as a reference for the HE-REZ. Thermal cycling test results demonstrate that the HE-REZ/YSZ DCL coating exhibited obviously improved thermal stability when compared to the LZ/YSZ DCL coating. The reasons for the improvement of the thermal shock resistance are considered to be the anti-sinterability of the HE-REZ ceramics during the thermal cycling test attributed to the sluggish diffusion effect and as well as the better match in the coefficient of thermal expansion of HE-REZ coating with the YSZ inner layer. In addition, the HE-REZ coating maintains fluorite structure after thermal cycling test. This study makes one step forward in the development and application of high-entropy rare-earth zirconate ceramic thermal barrier coatings.  相似文献   

6.
High-entropy ceramics exhibit great application potential as thermal barrier coating (TBC) materials. Herein, a series of novel high-entropy ceramics with RE2(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)2O7 (RE2HE2O7, RE = Y, Ho, Er, or Yb) compositions were fabricated via a solid-state reaction. X-ray diffraction (XRD) and energy dispersive spectrometry (EDS) mapping analyses confirmed that RE2HE2O7 formed a single defect fluorite structure with uniform elemental distribution. The thermophysical properties of the RE2HE2O7 ceramics were investigated systematically. The results show that RE2HE2O7 ceramics have excellent high-temperature phase stability, high thermal expansion coefficients (10.3–11.7 × 10?6 K-1, 1200 ℃), and low thermal conductivities (1.10-1.37 W m-1 K-1, 25 ℃). In addition, RE2HE2O7 ceramics have a high Vickers hardness (13.7–15.0 GPa) and relatively low fracture toughness (1.14-1.27 MPa m0.5). The outstanding properties of the RE2HE2O7 ceramics indicate that they could be candidates for the next generation of TBC materials.  相似文献   

7.
An entropy-stabilized rare earth hafnate (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 (5RH) with defective fluorite structure was successfully prepared by the emerging ultrafast high-temperature sintering (UHS) in less than six minutes. The 5RH ceramic possessed a higher thermal expansion coefficient (11.23 ×10?6/K, 1500 °C) and extremely low thermal conductivity (0.94 W/(m·k), 1300 ℃) owing to the larger lattice distortion of high-entropy materials. After high-temperature annealing at 1500 ℃, the 5RH showed extremely sluggish grain growth characteristics and excellent high-temperature phase stability, mainly attributed to the non-equilibrium sintering characteristic of the UHS and the sluggish diffusion effect of high-entropy materials. Therefore, (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 has excellent potential as a next-generation thermal barrier coating material to replace traditional Y2O3 stabilized ZrO2. Finally, using the UHS to prepare high-entropy ceramics provides a new technique for fast-sintering and developing next-generation thermal barrier coating materials.  相似文献   

8.
《Ceramics International》2023,49(6):9052-9059
A novel (Sm0.2Lu0.2Dy0.2Yb0.2Y0.2)3TaO7 (SLT-5RE0.2) oxide with a single-fluorite structure was synthesized via an optimized sol-gel and sintering method, and its crystal structure, mechanical and thermophysical properties were investigated. The results indicate that the calcined nanoscale powder is of high crystallinity, and bulk sample is of a uniform elemental distribution. Compared to YSZ (6–8 wt.% Y2O3 partially stabilized by ZrO2), SLT-5RE0.2 exhibits lower Young's modulus, less mean acoustic velocity, and higher Vickers microhardness. Owing to the strengthened anharmonic vibration and phonon scattering, SLT-5RE0.2 exhibits low thermal conductivity (1.107 W K?1·m?1, 900 °C). The high thermal expansion coefficient (11.3 × 10?6 K?1, 1200 °C) of SLT-5RE0.2 ceramic can be ascribed to the reduced lattice energy and ionic spacing as well as the cocktail effect of high-entropy ceramics. The excellent mechanical and thermophysical properties, and excellent phase steadiness during the whole testing temperature cope, indicate that SLT-5RE0.2 high-entropy ceramic can be a candidate material for thermal barrier coatings.  相似文献   

9.
The thermochemical behavior of EBC candidate materials yttrium disilicate (Y2Si2O7) and ytterbium disilicate (Yb2Si2O7) was evaluated with three calcium-magnesium-aluminosilicate (CMAS) glasses possessing CaO:SiO2 ratios relevant to gas turbine systems. Pellet mixtures of 50 mol% EBC powder to 50 mol% CMAS glass powder were heat treated at 1200°C, 1300°C, and 1400°C. The products of these interactions were evaluated using X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. Above glass melting temperatures, exposure of the disilicates primarily resulted in dissolution into the molten glass followed by precipitation of a Ca2RE8(SiO4)6O2 (RE = Yb3+, Y3+) apatite-type silicate and/or rare earth disilicate. In glasses with high CaO concentrations, apatite readily forms while the disilicate material is consumed by the reaction. As CaO content decreases, the disilicate phase becomes the main reaction product. Overall, reactions with yttrium disilicate favored more apatite crystallization than ytterbium disilicate. The viability of using these disilicates in various operating environments is discussed.  相似文献   

10.
The oxidation of SiC and the formation of a thermally grown oxide layer (TGO) limit the lifetime of environmental barrier coatings. Thus, this paper focuses on the deposition of denser Yb2Si2O7 coatings using electrophoretic deposition to reduce the TGO growth rate. The findings showed densification for Yb2Si2O7 can be achieved with an optimized sintering profile (heating/cooling rate, temperature, and time). However, the addition of 1.5 wt% of Al2O3 to Yb2Si2O7 promoted densification and lowered the required sintering temperature, 1380 °C using 2 °C/min heating/cooling rate for 10 h provided efficient coating density. Moreover, adding Al2O3 reduced the TGO growth rate by more than 70 % compared to the Al2O3-free coatings, without cracking in TGO after 150 h of thermal ageing at 1350 °C. Results within this study suggest electrophoretic deposition with Al2O3 addition produces promising Yb2Si2O7 environmental barrier coatings on SiC substrate with low oxidation rates and increased lifetime.  相似文献   

11.
《Ceramics International》2023,49(8):11837-11845
Environmental barrier coatings (EBCs) have been expected to be applied on the surface of ceramic matrix composites (CMCs). However, the oxidation and propagation cracking of the silicon bond layer are the most direct causes to induce the failure of EBCs under high temperature service environment. The modification of silicon bond layer has become an important method to prolong the service life of EBCs. In this work, the Yb2O3 have been introduced to the silicon bond layer, and three kinds of tri-layer Yb2SiO5/Yb2Si2O7/(Si-xYb2O3) EBCs with modified Si bond layer by different contents of Yb2O3 (x = 0, 10 vol%, 15 vol%) were prepared by vacuum plasma spray technique. The thermal shock performance and long-term oxidation resistance of the EBCs at 1350 °C were investigated. The results showed that the addition of appropriate amount of Yb2O3 (10 vol%) can improve the structural stability and reduce the cracks of the mixed thermal growth oxide (mTGO) layer by forming the oxidation product of Yb2Si2O7 during long-term oxidation. The excessive addition of Yb2O3 increased the stress during thermal shock as well as accelerated the oxygen diffusion during long-term oxidation, leading to the failure of EBCs. Moreover, the distribution uniformity of Yb2O3 deserves further consideration and improvement.  相似文献   

12.
With the increased demand for high operating temperature of gas turbine engines, corrosion by molten calcium-magnesium-alumino-silicate (CMAS) exhibits a significant challenge to the development of durable environmental barrier coatings (EBCs). EBC candidates, γ-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 were explored on their corrosion resistance to CMAS melts at 1300 °C and 1500 °C for 50 h. Interaction and degradation mechanisms were investigated and the corrosion behaviors showed different trends at high temperatures. At 1300 °C, RE2Si2O7 dissolves into CMAS melts and apatite phases reprecipitate forming a thick recession layer. However, when the temperature increases to 1500 °C, CMAS melts vigorously penetrate through the grain boundary of RE2Si2O7 and ‘blister’ cracks form throughout the samples. The reduced grain boundary stability at 1500 °C promotes the penetration of CMAS melts in RE2Si2O7. Grain boundary engineering is critically demanded to optimize CMAS corrosion at high temperatures.  相似文献   

13.
Ta2O5 doped Hf6Ta2O17 system (Hf6Ta2O17/Ta2O5) is considered to have potential application prospect in the field of aero-engine. We herein focus on the thermo-physical, mechanical properties and CMAS corrosion resistance of Hf6Ta2O17/Ta2O5 to systematically evaluate the possibility for the application of environmental barrier coating (EBC). By changing the content of Ta2O5, the gradient adjustment of thermal expansion coefficient can be realized while maintaining low thermal conductivity (1.5–2.2 W/(m·K)). The introduction of Ta2O5 significantly reduces the modulus and improves the fracture toughness. Single-phase Hf6Ta2O17 shows excellent corrosion resistance against molten calcium-magnesium-alumina-silicate (CMAS). The crystallization of CaTa2O6 and HfSiO4 is the important factor to prevent further corrosion. The introduction of Ta2O5 weakens the ability to prevent Si penetration and greatly increases the thickness of the corrosion layer. The results highlight the merit of Hf6Ta2O17/Ta2O5 system as potential candidate for multi-layer gradient coating on the surface of ceramic matrix composites.  相似文献   

14.
《Ceramics International》2022,48(12):17369-17375
The suitability of sintered erbium disilicate (Er2Si2O7) as an environmental barrier coatings (EBCs) for gas turbine applications was assessed by characterizing its high-temperature corrosion behavior in contact with a synthetic calcia-magnesia-alumina-silica (CMAS) melt. Er2Si2O7 was fabricated using spark plasma sintering at 1400 °C for 20 min. Corrosion tests were performed by coating sintered Er2Si2O7 pellets with CMAS and heating them to 1400 °C for 2, 12, and 48 h. High-temperature X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis were used to identify and analyze the reaction products. The two materials were found to react chemically to form an apatite phase, Ca2Er8(SiO4)6O2, at their interface. The Ca2Er8(SiO4)6O2 grains were observed to have shard-like morphologies oriented perpendicular to the Er2Si2O7 surface; the reaction layer thickened with increasing heat-treatment time, with the thickness after exposure for 48 h approximately three times the thickness after 2 h.  相似文献   

15.
High-temperature molten calcium-magnesium-alumina-silicate (CMAS) corrosion has become a fatal factor for the failure of aero-engine thermal barrier coatings. In this study, a promising entropy-stabilized (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 (5YH) hafnate was prepared by the emerging ultrafast high-temperature sintering (UHS), and its corrosion and wetting behavior of molten CMAS were investigated. For the corrosion mechanism, the precipitation of the high-entropy apatite phase promotes the formation of the HfO2 phase, and it can improve the density and stability of the slow-growing reaction layer, hindering the further penetration of molten CMAS. At 1300 ℃, a reaction layer with a three-layered morphology is generated, resulting from the decreased viscosity of the molten CMAS. Moreover, computational analysis shows that molten CMAS on the 5YH surface has a larger contact angle (17°) than traditional YSZ (13°), and the spreading area is about 90 % of traditional YSZ, which benefits for its good CMAS corrosion resistance.  相似文献   

16.
(Gd1−xYbx)2Zr2O7 compounds were synthesized by solid reaction. Yb2O3 doped Gd2Zr2O7 exhibited lower thermal conductivities and higher thermal expansion coefficients (TECs) than Gd2Zr2O7. The TECs of (Gd1−xYbx)2Zr2O7 ceramics increased with increasing Yb2O3 contents. (Gd0.9Yb0.1)2Zr2O7 (GYbZ) ceramic exhibited the lowest thermal conductivity among all the ceramics studied, within the range of 0.8–1.1 W/mK (20–1600 °C). The Young's modulus of GYbZ bulk is 265.6 ± 11 GPa. GYbZ/YSZ double-ceramic-layer thermal barrier coatings (TBCs) were prepared by electron beam physical vapor deposition (EB-PVD). The coatings had an average life of more than 3700 cycles during flame shock test with a coating surface temperature of ∼1350 °C. Spallation failure of the TBC occurred by delamination cracking within GYbZ layer, which was a result of high temperature gradient in the GYbZ layer and low fracture toughness of GYbZ material.  相似文献   

17.
《Ceramics International》2023,49(4):6429-6439
Rare earth monosilicate (RE2SiO5) is one of the most promising candidates as an environmental barrier coating (EBC) for SiCf/SiC ceramic matrix composites. But single-component RE2SiO5 is hard to meet the multiple and harsh performance requirements of EBC which brings a significant challenge to their applications. Based on our previous research on single-component RE2SiO5 ceramics, (Ho0.4Yb0.3Lu0.3)2SiO5 solid solution was designed and successfully fabricated in this work. Doping of multiple RE elements endows (Ho0.4Yb0.3Lu0.3)2SiO5 with excellent thermal insulation properties and matched thermal expansion coefficient with SiCf/SiC substrates. In addition, it exhibits lower elastic modulus and comparable hardness than that of single-component RE2SiO5. (Ho0.4Yb0.3Lu0.3)2SiO5 also presents good resistance to calcium-magnesium alumino-silicates (CMAS) corrosion. Rational composition design allows (Ho0.4Yb0.3Lu0.3)2SiO5 to retain the merits of single-component RE2SiO5 while taking advantage of the solid solution effect. The results of this work suggest (Ho0.4Yb0.3Lu0.3)2SiO5 as a promising EBC candidate.  相似文献   

18.
《Ceramics International》2020,46(13):21367-21377
In this work, Gd2Hf2O7 ceramics were synthesized and investigated as a potential thermal barrier coating (TBC) material. The phase composition, microstructure and associated thermal properties of Gd2Hf2O7 ceramics were characterized systematically. Results show that the thermal conductivity of Gd2Hf2O7 ceramics is 1.40 Wm−1K−1 at 1200 °C, ~25% lower than that of 8 wt% yttria partially stabilized zirconia (8YSZ). Gd2Hf2O7 ceramics also present large thermal expansion coefficients, which decrease from 12.0 × 10−6 K−1 to 11.3 × 10−6 K−1 (300–1200 °C). Besides, the hot corrosion behaviors of Gd2Hf2O7 ceramics exposed to V2O5 and Na2SO4 + V2O5 salts at temperatures of 900–1200 °C were discussed in great detail. We pay much attention on the corrosion process, corrosion mechanism and corrosion damage of Gd2Hf2O7 ceramics subjected to molten V2O5 and Na2SO4 + V2O5 salts at different temperatures.  相似文献   

19.
《Ceramics International》2023,49(7):10525-10534
Thermal barrier coatings are an effective technology for improving the high-temperature performance of hot section components in gas turbine engine. Due to their excellent properties, high-entropy oxides are considered to be promising materials for thermal barrier coatings. Laser cladding is a coating preparation technology and the top coat prepared by laser cladding technology has an important application value for thermal barrier coatings. In this work, to improve the thermal cycling behavior of the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide coating, a bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide layer and the YSZ layer was designed and fabricated by laser cladding on the NiCoCrAlY alloy surface. The microstructure, phase and mechanical properties of the coating were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and micro-hardness and nanoindentation tests, respectively. The results show that a bi-layer La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7/YSZ coating was successfully prepared by the laser cladding method, and shows good bonding at the interface between the layers. The high-entropy oxide layer maintains a relatively stable defective fluorite structure and its microstructure exists in the stable cellular and dendrite crystalline state after laser cladding. The high-entropy oxide layer prepared by laser cladding showed an average elastic modulus of 167 GPa and an average hardness of 1022.8HV in nanoindentation tests. Thermal cycling of the coating was carried out at 1050 °C. Failure of the bi-layer coating occurred after 60 thermal cycles at 1050 °C. Thermal stresses between different layers are calculated during thermal cycling. Due to its excellent mechanical properties, the bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide and YSZ layers is expected to become an effective high-entropy oxide thermal barrier coating.  相似文献   

20.
The high-temperature interaction between ~2.5 mg/cm2 of Na2SO4 and an atmospheric plasma sprayed (APS) Yb2Si2O7 topcoat–Si bond coat system on SiC CMC substrates was studied for times up to 240 h at 1000°C–1316°C in a 0.1% SO2–O2 gaseous environment. Yb2Si2O7 reacted with Na2SO4 to form Yb2SiO5 and an intergranular amorphous Na-silicate phase. Below 1200°C, the reaction was sluggish, needing days to cause morphological changes to the “splat microstructure” associated with APS coatings. The reaction was rapid at 1200°C and above, needing only a few hours for the entire topcoat to transform into a granulated microstructure consisting of Yb2SiO5 and Yb2Si2O7 phases. Na2SO4 deposits infiltrated the Yb2Si2O7 topcoat and transformed into an amorphous Na-silicate in less than 1 h at all exposure temperatures. Quantitative assessment of the Yb2SiO5 area fraction in the topcoat showed a linear decrease over time at 1316°C, attributed to reaction with the SiO2 thermally grown oxide (TGO) formed on the Si bond coat and rapid transport through the interpenetrating amorphous Na-silicate grain boundary phase. It was predicted that nearly 2 weeks is needed for complete removal of Yb2SiO5 from the topcoat at 1316°C for a single applied loading of Na2SO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号