首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(9):6891-6897
Transparent magnesium aluminate spinel (MgAl2O4) ceramics were fabricated by hot-pressing of the MgO and α-Al2O3 powder mixture using LiF as a sintering aid. Effects of the LiF additive on densification, microstructure and optical properties of MgAl2O4 ceramics were systematically investigated. It has been found that the addition of LiF can effectively remove the porosity and increase the optical transparency of MgAl2O4 ceramics. For the spinel ceramics HP-ed at 1550 °C for 3 h with 1 wt% LiF addition, the average grain size is about 36 µm and the in-line transmittance exceeds 60% at the wavelength of 800 nm.  相似文献   

2.
Tetraethyl orthosilicate (TEOS) was commonly served as a sintering additive to promote the densification of transparent Y3Al5O12 (YAG) ceramics. However, Si4+ that decomposed from TEOS would restrain the conversion of dopants into a higher valence state (e.g., Cr3+  Cr4+). In this study, by using divalent sintering additives (CaO and MgO), the colorless and highly transparent YAG ceramics (T = 84.6%, at 1064 nm) were obtained after vacuum sintering at 1840 °C for 8 h and without subsequent annealing in air. An absorption peak centered at ∼320 nm was observed before annealing, and it extended to ∼550 nm after annealing at 1450 °C for 10 h in air. A discoloration phenomenon occurred and more scattering centers were observed with the formation of new [Mg/Ca2+F+] color centers. Air annealing did not improve the optical quality of the as-fabricated YAG ceramics with divalent dopants as sintering additives, owing to the formation of scattering centers.  相似文献   

3.
《Ceramics International》2019,45(14):17354-17362
Yb:YAG (yttrium aluminum garnet) transparent ceramics were fabricated by the solid-state method using monodispersed spherical Y2O3 powders as well as commercial Al2O3 and Yb2O3 powders. Pure YAG phase was obtained at low temperature due to homogeneous mixing of powders. Under the same sintering conditions, the Yb:YAG ceramics with different doping contents of Yb3+ had similar morphologies and densification rates. After being sintered at 1700 °C in vacuum, the ceramic samples had high transparencies. The Yb:YAG ceramics doped with 0.5 wt% SiO2 formed Y–Si–O liquid phase and nonstoichiometric point defects that enhanced sintering. Compared with Nd doping, Yb doping hardly affected the YAG grain growth, sintering densification or optical transmittance, probably because Yb3+ easily entered the YAG lattice and had a high segregation coefficient.  相似文献   

4.
In this work, we investigated the effects of Ca2+ and Mg2+ ions and annealing temperature on the spectroscopic parameters of chromium-doped yttrium aluminum garnet ceramics (Cr:YAG). Samples were obtained with either a separate or a simultaneous addition of calcium and magnesium oxides. To achieve this, aqueous suspensions were prepared using Y2O3, Al2O3, Cr2O3, MgO, and CaO high-purity powders as raw materials. The obtained suspensions were freeze-granulated, pressed into pellets, debinded, and subjected to reactive sintering in vacuum at 1715°C for 6 h. Each material was annealed in air with temperatures between 1300 and 1700°C. Samples were also compared to Cr:YAG ceramics with the addition of silica as a sintering aid. All the materials obtained were then exposed to 445 nm excitation, and emission spectra in the visible and infrared wavelengths were recorded. The results showed that the emission spectra of Cr:YAG ceramics varied according to the annealing conditions: as-sintered samples exhibited strong emissions of around 680 nm and, after air annealing, of around 1400 nm. This phenomenon is attributed to the Cr3+→Cr4+ transition. Samples doped solely with MgO exhibited the highest emission intensity in the infrared region. Thus, Mg2+ ions provided the best conversion efficiency of chromium ions.  相似文献   

5.
Transparent composite YAG crystal/ceramics were synthesized by solid-state reaction method using high-purity Y2O3, Al2O3 powders as raw materials. The mixed slurry was dried, sieved, and cold-isostatically pressed with Nd:YAG crystal under a pressure of 250 MPa. The mixed powder compacts were sintered at 1780 °C for 10 h under vacuum and annealed at 1450 °C for 20 h in air. The microstructure of YAG crystal/ceramics ceramics was studied with SEM and EPMA, which showed there was an intermediate layer between Nd:YAG crystal and YAG ceramics. HRTEM image and corresponding SAED patterns studied showed that the intermediate layer was the YAG ceramics grain that grew along Nd:YAG crystal orientation and has become one part of crystal.  相似文献   

6.
Yttrium aluminium garnet doped with rare earth ions is one of the most common active media in solid state lasers. In high-power lasers, thermal management is crucial, requiring information on the thermal properties. In this work, the thermal diffusivity and conductivity of polycrystalline YAG ceramics doped with Yb and Er were measured by laser flash method at various temperatures ranging from room temperature to 900 °C. Transparent ceramic YAG samples were prepared by solid state reactive sintering of oxide powders under vacuum. Thermal diffusivity and conductivity showed similar trends, decreasing with increasing temperature as well as with the increase of dopant content from 0 to 20 at.%. The measured values were compared with literature data and empirical relations. Similar values were obtained both for Yb and Er doping. We thus suggest that the data of thermal diffusivity and conductivity of Yb:YAG may be used as a first approximation for Er:YAG.  相似文献   

7.
杨大正  张跃  刘敏  葛昌纯 《耐火材料》2004,38(6):426-428
对比了ZrN+AlN助烧结剂与ZrN+AlN+Y2O3助烧结剂对1800℃、25 MPa下热压烧成Si3N4陶瓷显微结构和力学性能的影响,并着重对ZrN+AlN+Y2O3复合助烧结剂促进Si3N4陶瓷烧结的机理进行了探讨.结果表明加ZrN+AlN+Y2O3助烧结剂能明显促进Si3N4陶瓷的烧结,提高陶瓷强度,其相对密度可达97.84%,常温弯曲强度为601.21 MPa,断裂韧性达8.9 MPa·m1/2;而加ZrN+AlN助烧结剂的Si3N4陶瓷未致密化.  相似文献   

8.
This paper presents experimental data and its interpretation regarding the forming of YAG and spinel green-bodies, intended for transparent parts fabrication, by the pressure slip casting (PSC) method. Conditions for an optimal operation are established based on the modeling of the filtration kinetics. It emerges that the method is able to provide highly sinterable green parts by ensuring that the cakes porosity exhibits low average size and narrow size distribution. Results were compared with other popular forming approaches like slip casting (SC) and cold isostatic pressing (CIP). PSC was found as superior, to the other approaches, as far as obtainment of high sinterability green- bodies is concerned. In the case of YAG, it was shown that PSC method even allows the replacement of the traditional long vacuum firings by a two stage densification operation in which an initial air-firing is completed by a hot isostatic pressing step.  相似文献   

9.
《Ceramics International》2023,49(20):33004-33010
The sintering aids play an important role in affecting the properties of porous Si3N4 ceramics. However, there are few researches on the properties of porous Si3N4 ceramics fabricated by digital light processing (DLP) with different ratios of sintering aids. In this paper, porous Si3N4 ceramics with different ratios of sintering aids (Y2O3-Al2O3) were formed by DLP technology. The influence of Y2O3-Al2O3 ratios on the properties of Si3N4 slurry and porous ceramic was studied systematically. The ratio of Y2O3-Al2O3 had little effect on the rheology and cure depth of Si3N4 slurry due to the low addition of sintering aids. The increase of Y2O3-Al2O3 ratio promoted the anisotropic growth of β-Si3N4. When the ratio of Y2O3-Al2O3 was 9:1, the aspect ratio of β grains reached the maximum. As the ratio of Y2O3-Al2O3 powders increased, the linear shrinkage of porous Si3N4 ceramics showed an increasing and then decreasing trend in three directions. When the Y2O3-Al2O3 ratio was 3:7, the shrinkage rate in the length, width and height direction reached the maximum (27.03%, 30.27% and 40.02%, respectively). The bulk density and flexural strength exhibited an initial increase followed by a subsequent decrease, while the porosity showed the opposite trend. When the Y2O3-Al2O3 ratio was 9:1, the porosity reached a maximum of 28.1%. And the bulk density and flexural strength were 2.42 g/cm3 and 421.58 MPa, respectively. This study is of great significance as it lays the experimental foundation in the performance control of porous Si3N4 ceramics fabricated by DLP.  相似文献   

10.
Utilizing the Si4+/Mg2+ co-doping has been considered an effective approach to fabricate highly transparent ceramics. However, the optimum doping concentration has been reported with considerable uncertainties. In this work, highly transparent Yb:YAG ceramics were obtained via the solid-state method and the sintering behavior is discovered to be closely related to both the doping concentration of Si4+/Mg2+ and the specific surface area (SBET) of powders. SBET is effectively modified by setting the ball-milling time, where the maximum SBET (30.914 m2/g) is achieved with 24 h ball-milling time. With increasing SBET, less Mg2+ is required for better optical properties. When SBET equals 30.914 m2/g, the highest in line transmittance @ 1100 nm of 84.85% is obtained with Si4+/Mg2+ doping concentrations of 0.50 wt% and 0.05 wt%, respectively. The relation between SBET and optimum doping concentration is explained by the different magnitudes of liquid phase promotion required for different contact areas between powder particles.  相似文献   

11.
《Ceramics International》2015,41(6):7783-7789
YAG ceramics with good dielectric properties were prepared via a modified pyrolysis method, with yttrium nitrate as the yttrium source and combined aluminium sulphate and aluminium nitrate as aluminium sources, and subsequent sintering in a muffle furnace. The effects of the different aluminium sources on the powder characteristic and the impact of sintering temperature, sintering aids (TEOS) and additive (TiO2) on the dielectric properties of the ceramics were studied. The results show that well-dispersed pure YAG nano-powders can be obtained after calcination at 1000 °C with an aluminium sulphate and aluminium nitrate molar ratio of 1.5:2. The relative density, permittivity (εr) and quality factor (Q×f) of the YAG ceramics increase with sintering temperature and TEOS addition. TiO2 can greatly promote τf to near-zero but decreases Q×f. The relative density, εr, Q×f and τf of the YAG–1 wt% TEOS–1 wt% TiO2 ceramic obtained at 1520 °C are 97.6%, 9.9, 71, 738 GHz and −30 ppm/°C, respectively.  相似文献   

12.
Binary transparent magneto-optical (Ho1-xDyx)2O3 (x = 0.01–1) ceramics derived from layered rare-earth hydroxide (LRH) compounds were fabricated by vacuum sintering. They have in-line transmittances of ~67?77 % at the visible wavelength of 700 nm and ~77?84 % at the mid-infrared wavelength of 5 μm with similar maximal infrared cut-off at ~9.5 μm. The impacts of Dy3+ doping on particle properties, sintering kinetics and Faraday magneto-optical effects were systematically investigated. The results show that (1) The LRH precursors exhibit the nanosheet morphology with the thickness of ~6?10 nm. Dy3+ incorporation not only induces an expansion for the hydroxide host layer but also a contracted interlayer distance; (2) Upon calcination at 1100 °C, the LRH nanosheets collapse into sphere-like oxide particles. The addition of Dy3+ leads to increasing lattice constants and decreasing theoretical densities for the (Ho,Dy)2O3 solid solutions; (3) A smaller bandgap energy for Dy2O3 (~4.85 eV) was obtained relative to those of (Ho0.9Dy0.1)2O3 (~5.24 eV) and Ho2O3 (~5.31 eV); (4) Dy3+ dopant promotes grain growth and the pure Dy2O3 bulk has a rather smaller grain-boundary-diffusion controlled activation energy (~457 kJ/mol) than the (Ho0.9Dy0.1)2O3 counterpart (~626 kJ/mol); (5) The Verdet constants of magneto-optical (Ho1-xDyx)2O3 ceramics generally linearly increase with the rise of Dy3+ concentration.  相似文献   

13.
以粒度≤0.063mm的SiC为主要原料,分别加入30%(质量分数)的Al2O3-Y2O3与10%的Al2O3-高岭土复合助烧剂,并外加不同量(分别为12.8%、26.3%、30.0%和36.4%)的造孔剂羧甲基纤维素钠(CMC),制样后首先在空气炉中经过300℃2h或1100℃4h的预烧,然后在真空炉中于1550℃4h真空烧结而制备成SiC多孔陶瓷,并研究了助烧剂种类以及造孔剂CMC外加量对SiC多孔陶瓷显微组织、显气孔率及抗折强度的影响。结果显示:采用Al2O3-Y2O3作为助烧剂的SiC多孔陶瓷比Al2O3-高岭土作助烧剂的具有较高的抗折强度,显气孔率稍有减小;随着羧甲基纤维素钠量的增加,加入两种助烧剂的SiC多孔陶瓷均表现为显气孔率增加,抗折强度降低。  相似文献   

14.
(1-x)Mg0.90Ni0.1SiO3-xTiO2 (x = 0, 0.01, 0.03, 0.05) ceramics were successfully formed by the conventional solid-state methods and characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS), and their microstructure and microwave dielectric properties systematically investigated. It was observed that when TiO2 content increased from 0 to 5 wt%, the Qufo of the sample decreased from 118,702 GHz to 101,307 GHz and increases the τf value from −10 ppm/°C to +3.14 ppm/°C accompanied by a notable lowering in the sintering temperature (125 °C). A good combination of microwave dielectric properties (εr  8.29, Qufo  101,307 GHz and τf  −2.98 ppm/°C) were achieved for Mg0.90Ni0.1SiO3 containing 3 wt% of TiO2 sintered at 1300 °C for 9 h which make this material of possible interest for millimeter wave applications.  相似文献   

15.
(Y1-x%Cex%)3Al5O12 (x = 0.2,0.4,0.6,0.8,1.0) transparent ceramics were fabricated by vacuum sintering technology, followed by air annealing at different temperatures. Transmittance of ceramics, valence of cerium, and luminescent properties with varying annealing temperatures are studied in detail. The negative effect of Ce3+ oxidation induced by annealing gets increasingly evident when Ce concentration increases. Collaborating Ce:YAG ceramics with InGaN blue chips, light-emitting diodes (LEDs) with superior performance were constructed. The relationships between Ce concentration, annealing temperature, and luminous flux of LEDs are elucidated, showing that the optimized annealing temperature of Ce:YAG ceramics decreases from 1200 °C to 900 °C as Ce concentration increases from 0.2 at% to 1.0 at%. The luminous fluxes of optimized LEDs increase by ~10 % compared with that of unannealed LEDs.  相似文献   

16.
This work focuses on the development of an original process based on a 2.45 GHz single-mode microwave cavity equipped with a uniaxial press, to sinter transparent spinel MgAl2O4 ceramic in air. The samples were conventionally pre-sintered to a density of 90% TD before microwave sintering to the final stage of densification. The influence of thermomechanical cycle on the material properties was investigated. Transmittance, grain size distribution, hardness and fracture toughness of the samples were measured and correlated to the microstructure. This new sintering process has allowed obtaining transparent samples with sub micrometric grain size and high mechanical properties, with relatively short times and low temperature. These first results can be compared to some obtained by SPS or HIP. The technical input of this method is that all the process is here conducted in air atmosphere.  相似文献   

17.
The paper studies the features of Mg2+ ions as sintering aid for reactive solid-state sintering of YAG transparent ceramics. Phase composition, microstructure and optical properties of YAG ceramics, doped by 0 ÷ 0.15 wt.% MgO, were investigated. Solubility limit of Mg2+ ions in YAG crystal lattice was found to be in the range of 0.06 ÷ 0.1 wt.% of MgO additive. Substitution mechanism of Mg2+ in ceramic YAG was identified by comparison of XRD data and ab initio calculation. It was shown that within the solubility limit Mg2+ ions most likely substitute Al3+ sites. Doping by MgO above solubility limit led to precipitation of spinel secondary phases. It was found that doping by Mg2+ ions increases concentration of oxygen vacancies in YAG lattice that effectively promote sintering. The optimal concentration range of MgO sintering aid that allow to achieve YAG transparent ceramics was defined as 0.03 ÷ 0.06 wt.%.  相似文献   

18.
The impact of minor stoichiometric variations on the microstructure, optical characteristics, and luminescent properties of YAG:Cr ceramics, synthesized from chemically precipitated ceramic powders, was assessed for the first time. Transparent ceramics with over 70% transparency was produced with a nominal yttrium excess ranging from 0.47 to −1 mol.%. The phase composition, microstructure, and luminescent properties of quasi-stoichiometric YAG:Cr ceramics were examined, and the impact of stoichiometric deviations on the crystal lattice parameter and average grain size in ceramics was outlined. An examination of the optical characteristics of the ceramics revealed a specific absorption band in the case of yttrium excess. The effect of stoichiometry deviation on the luminescent properties of YAG:Cr ceramics was investigated. A change in stoichiometry from −1–0.47 mol.% excess yttrium resulted in a broadening of the luminescence R-line and a decrease in the lifetime of the excited state of Cr3+ from 1.91 to 1.81 ms.  相似文献   

19.
BaF2 ceramics were prepared using a one-step cold sintering process with an ultra-low sintering temperature of 150 °C and uniaxial pressures ranging from 450 to 900 MPa. The relative density and microstructure improved steadily with the increasing pressure, and a fully densified microstructure with a relative density of 97.2% was achieved at 900 MPa. For BaF2 ceramics with a thickness of 1 mm, the optimum in-line transmittance in the visible light region (58.5%) was achieved at a wavelength of 720 nm, and the maximum value (65.3%) was obtained at 1864 nm. The permittivity of the ceramics increased gradually from 6.18 to 7.09 with increasing pressure, and the dielectric loss was optimized from 0.01 to 0.003. Additionally, the mechanical properties improved continuously with the increasing pressure, and the optimal compressive strength (257 MPa), hardness (2.01 GPa), and Young's modulus (54.8 GPa) were achieved when cold sintered at 900 MPa.  相似文献   

20.
《Ceramics International》2023,49(18):29913-29922
Reduced copper slag is a promising substitute constituent in anorthite-based ceramics. To reduce the sintering temperature of this type of slag-derived ceramics, the role of TiO2 addition in the sintering, microstructure, physical and mechanical properties, and environmental and appearance performance was studied by experimental and theoretical methods. The results show that the Ti element was dissolved in the glassy phases and anorthite crystals instead of producing new phases. This behavior allows the liquid appearance at earlier temperatures and accelerates the ion diffusion, thus significantly enhancing the sintering and contributing to a dense microstructure with fine closed pores. Besides, this improvement is achieved at a relatively slight sacrifice of anorthite grains. The addition of 4 wt% TiO2 results in a decrease in the vitrification temperature by 100 oC and an enhancement of flexural strength by 50%. Moreover, the slag-derived ceramics show extremely low leaching toxicity and a relatively higher whiteness, ensuring the cleanliness and quality of anorthite-based ceramics. However, the ceramics show lower bulk density and obvious surface defects with the TiO2 content up to 6 wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号