首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilizing the Si4+/Mg2+ co-doping has been considered an effective approach to fabricate highly transparent ceramics. However, the optimum doping concentration has been reported with considerable uncertainties. In this work, highly transparent Yb:YAG ceramics were obtained via the solid-state method and the sintering behavior is discovered to be closely related to both the doping concentration of Si4+/Mg2+ and the specific surface area (SBET) of powders. SBET is effectively modified by setting the ball-milling time, where the maximum SBET (30.914 m2/g) is achieved with 24 h ball-milling time. With increasing SBET, less Mg2+ is required for better optical properties. When SBET equals 30.914 m2/g, the highest in line transmittance @ 1100 nm of 84.85% is obtained with Si4+/Mg2+ doping concentrations of 0.50 wt% and 0.05 wt%, respectively. The relation between SBET and optimum doping concentration is explained by the different magnitudes of liquid phase promotion required for different contact areas between powder particles.  相似文献   

2.
0.25at.% Cr:YAG ceramics were successfully fabricated as the edge cladding of Yb:YAG transparent ceramic slabs through vacuum sintering of co‐precipitated powders, using oxide additives to introduce different cations. The effects of various cation additives (Si4+, Ca2+, and Si4+ + Ca2+) on the conversion efficiency of Cr4+ ions and optical characteristics of the Cr:YAG edge cladding were investigated. Measurements of the absorption spectra of the Cr:YAG ceramics without any additives revealed 2 absorption bands centered at 430 nm and 600 nm, which imparted the sample with a green color. The introduction of only Si4+‐bearing additive did not promote the transition of Cr ions from the 3+ to 4+ state. Theoretical analysis and experimentation revealed that the addition of CaO not only enhanced the microstructure and improved the transmittance of the Cr:YAG ceramic, but also introduced vacancies that assisted in the formation of Cr4+ ions. It was determined that CaO has the same effect on the conversion efficiency of Cr4+ ions whether it is added as a single additive or in combination with SiO2. The underlying mechanisms by which these aliovalent cation additives influence the formation of Cr4+ ions and affect optical properties are discussed in detail. High quality composite ceramics with Yb:YAG transparent ceramic slabs and dark brown‐colored Cr4+: YAG ceramic edge cladding were achieved through the addition of 0.05 wt.% CaO to the edge cladding, with no interfacial effects between the 2 regions being observed.  相似文献   

3.
In this work, we investigated the effects of Ca2+ and Mg2+ ions and annealing temperature on the spectroscopic parameters of chromium-doped yttrium aluminum garnet ceramics (Cr:YAG). Samples were obtained with either a separate or a simultaneous addition of calcium and magnesium oxides. To achieve this, aqueous suspensions were prepared using Y2O3, Al2O3, Cr2O3, MgO, and CaO high-purity powders as raw materials. The obtained suspensions were freeze-granulated, pressed into pellets, debinded, and subjected to reactive sintering in vacuum at 1715°C for 6 h. Each material was annealed in air with temperatures between 1300 and 1700°C. Samples were also compared to Cr:YAG ceramics with the addition of silica as a sintering aid. All the materials obtained were then exposed to 445 nm excitation, and emission spectra in the visible and infrared wavelengths were recorded. The results showed that the emission spectra of Cr:YAG ceramics varied according to the annealing conditions: as-sintered samples exhibited strong emissions of around 680 nm and, after air annealing, of around 1400 nm. This phenomenon is attributed to the Cr3+→Cr4+ transition. Samples doped solely with MgO exhibited the highest emission intensity in the infrared region. Thus, Mg2+ ions provided the best conversion efficiency of chromium ions.  相似文献   

4.
Silicon nitride (Si3N4) ceramics doped with two different sintering additive systems (Al2O3–Y2O3 and Al2O3–Yb2O3) were prepared by hot-pressing sintering at 1800℃ for 2 h and 30 MPa. The microstructures, nano-indentation test, and mechanical properties of the as-prepared Si3N4 ceramics were systematically investigated. The X-ray diffraction analyses of the as-prepared Si3N4 ceramics doped with the two sintering additives showed a large number of phase transformations of α-Si3N4 to β-Si3N4. Grain size distributions and aspect ratios as well as their effects on mechanical properties are presented in this study. The specimen doped with the Al2O3–Yb2O3 sintering additive has a larger aspect ratio and higher fracture toughness, while the Vickers hardness is relatively lower. It can be seen from the nano-indentation tests that the stronger the elastic deformation ability of the specimens, the higher the fracture toughness. At the same time, the mechanical properties are greatly enhanced by specific interlocking microstructures formed by the high aspect ratio β-Si3N4 grains. In addition, the density, relative density, and flexural strength of the as-prepared Si3N4 ceramics doped with Al2O3–Y2O3 were 3.25 g/cm3, 99.9%, and 1053 ± 53 MPa, respectively. When Al2O3–Yb2O3 additives were introduced, the above properties reached 3.33 g/cm3, 99.9%, and 1150 ± 106 MPa, respectively. It reveals that microstructure control and mechanical property optimization for Si3N4 ceramics are feasible by tailoring sintering additives.  相似文献   

5.
Porous silicon nitride (Si3N4) ceramics were fabricated by self-propagating high temperature synthesis (SHS) using Si, Si3N4 and sintering additive as raw materials. Effects of different types of sintering additives with varied ionic radius (La2O3, Sm2O3, Y2O3, and Lu2O3) on the phase compositions, development of Si3N4 grains and flexural strength (especially high-temperature flexural strength) were researched. Si3N4 ceramics doped with sintering additive of higher ionic radius had higher average aspect ratio, improved room-temperature flexural strength but degraded high-temperature flexural strength. Besides, post-heat treatment (PHT) was conducted to crystallize amorphous grain boundary phase thus improving the creep resistance and high-temperature flexural strength of SHS-fabricated Si3N4 ceramics. Excellent high-temperature flexural strength of 140 MPa~159 MPa and improved strength retention were achieved after PHT at 1400 °C.  相似文献   

6.
Tetravalent chromium‐doped Y3Al5O12 ceramics were fabricated by solid‐state reactive sintering method using high‐purity Y2O3, α‐ Al2O3, and Cr2O3 powders as the starting materials. CaO and MgO were co‐doped as the sintering aids. The effects of TEOS and divalent dopants (CaO and MgO) on the optical qualities, the conversion efficiency of Cr4+ ions, and the microstructure evolutions of 0.1 at.% Cr4+: YAG ceramics were investigated. Fully dense, dark brown colored Cr4+: YAG ceramics with an average grain size of 3.1 μm were achieved. The in‐line transmittance of the as‐prepared ceramic at 2000 nm was 85.3% (4 mm thick), and the absorption coefficient at 1030 nm (the characteristic absorption peak of Cr4+ ions) was as high as 3.7 cm?1, which was higher than that of corresponding single crystals fabricated by Czochralski method.  相似文献   

7.
Tetraethyl orthosilicate (TEOS) was commonly served as a sintering additive to promote the densification of transparent Y3Al5O12 (YAG) ceramics. However, Si4+ that decomposed from TEOS would restrain the conversion of dopants into a higher valence state (e.g., Cr3+  Cr4+). In this study, by using divalent sintering additives (CaO and MgO), the colorless and highly transparent YAG ceramics (T = 84.6%, at 1064 nm) were obtained after vacuum sintering at 1840 °C for 8 h and without subsequent annealing in air. An absorption peak centered at ∼320 nm was observed before annealing, and it extended to ∼550 nm after annealing at 1450 °C for 10 h in air. A discoloration phenomenon occurred and more scattering centers were observed with the formation of new [Mg/Ca2+F+] color centers. Air annealing did not improve the optical quality of the as-fabricated YAG ceramics with divalent dopants as sintering additives, owing to the formation of scattering centers.  相似文献   

8.
In the present work, the influence of Cr and Ca co-additives on the phase formation under conditions emulated the real sintering process of Cr4+:YAG ceramics is studied. The XRD analysis of the treated samples revealed the difference in formation rates of intermediate phases between the samples with and without the Cr2O3 additive. The formation of intermediate phases in the solid-state reaction between Y2O3 and Al2O3 is observed to shift toward higher temperatures (ie, toward the stage of fast shrinkage) if the mixture of Cr2O3 and CaO is added. The reason for such shift is the appearance of new intermediate, which contains Cr4+ ions in perovskite structure, as has been established by optical absorption and luminescent investigations. It is found that the Cr,Ca:YAG ceramics prepared by vacuum solid state reaction sintering at 1750°C, 10 hours possesses better optical transparency than Ca:YAG ceramics prepared under the same conditions.  相似文献   

9.
The paper studies the features of Mg2+ ions as sintering aid for reactive solid-state sintering of YAG transparent ceramics. Phase composition, microstructure and optical properties of YAG ceramics, doped by 0 ÷ 0.15 wt.% MgO, were investigated. Solubility limit of Mg2+ ions in YAG crystal lattice was found to be in the range of 0.06 ÷ 0.1 wt.% of MgO additive. Substitution mechanism of Mg2+ in ceramic YAG was identified by comparison of XRD data and ab initio calculation. It was shown that within the solubility limit Mg2+ ions most likely substitute Al3+ sites. Doping by MgO above solubility limit led to precipitation of spinel secondary phases. It was found that doping by Mg2+ ions increases concentration of oxygen vacancies in YAG lattice that effectively promote sintering. The optimal concentration range of MgO sintering aid that allow to achieve YAG transparent ceramics was defined as 0.03 ÷ 0.06 wt.%.  相似文献   

10.
The aim of this study was to evaluate the mechanical properties and coloration of silicon nitride ceramics in the presence of RE2O3 (RE = Nd, Eu or Dy). Dense Si3N4 ceramics were prepared by gas pressure sintering at 1800 °C for 2 h. XRD analysis confirmed the complete transformation of α-Si3N4 to β-Si3N4. The fracture toughness and flexure strengths were 11.93 ± 0.56 MPa·m1/2, 667 ± 40.98 MPa with the addition of Eu2O3 (SE). Base on the SEM image, the pull-out, bridging and deflection of large grains were observed and contributed to the increase in mechanical properties. The chromaticity of sintered bodies was measured using a spectrophotometer. The color difference of the ceramics is due to the formation of different color developing compounds according to the EDS. Results showed that high-toughness and colorful Si3N4 ceramics can be prepared using YAG:Ce3+ as sintering additive and RE2O3 as the colorant.  相似文献   

11.
Aluminum oxynitride (AlON) ceramics doped with different sintering aids were synthesized by spark plasma sintering process. The microstructures, mechanical, and optical properties of the ceramics were investigated. The results indicate that the optimal amount of sintering aids is 0.06 wt% La2O3 + 0.16 wt% Y2O3 + 0.30 wt% MgO. The addition of La3+ and Mg2+ decreases the rate of grain boundary migration in ceramics, promotes pore elimination, and inhibits grain growth. The addition of Y3+ facilitates liquid-phase sintering of AlON ceramics. Moreover, the addition of Mg2+ effectively promotes twin formation in the ceramics, which hinders crack propagation and dislocation motion when the ceramics are loaded. Hence, the AlON ceramic doped with 0.06 wt% La2O3 + 0.16 wt% Y2O3 + 0.30 wt% MgO exhibits a relative density of 99.95%, an average grain size of 9.42 μm, and a twin boundary content of 10.3%, which contributes to its excellent mechanical and optical properties.  相似文献   

12.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

13.
《Ceramics International》2023,49(13):21941-21946
Cerium-doped yttrium aluminum garnet (YAG:Ce) based transparent ceramics have been widely used in fluorescent lighting as high-quality inorganic fluorescent conversion materials. This paper further explores the Mg2+-Si4+ ions doped YAG:Ce transparent ceramics by combining the solid-phase reaction method with vacuum hot-pressure sintering and implementing protection measures against hot-pressure mold contamination, and also investigates the effect of different Mg2+-Si4+ doping contents on the structure, transmittance and luminescence properties of the ceramics under hot-pressure sintering. In this work, pure-phase YMASG:Ce transparent fluorescent ceramics with a grain size of about 3-6 μm and clear and clean grain boundaries were obtained with an In-line transmittance of 67% at 800 nm. Under the excitation at 460 nm, the emission peak was red-shifted by 26 nm and the full width at half maxima (FWHM) was broadened with the increase of Mg2+-Si4+ content, which shows that the Mg2+-Si4+ ion pair effectively complements the absence of the red light component in the YAG:Ce emission spectrum. The optimized YMASG:Ce ceramics obtained high-quality warm white light with a low correlated color temperature (CCT) and a high color rendering index (CRI) under the excitation of the blue LED chip. This work proved the feasibility of vacuum hot-pressure sintering to prepare YMASG:Ce transparent fluorescent ceramics, and provided a new approach for studying YMASG:Ce-based ceramics, which was significant for the application of high-power visible laser illumination.  相似文献   

14.
Si3N4 ceramics were prepared by gas pressure sintering at 1900°C for 12 h under a nitrogen pressure of 1 MPa using Gd2O3 and MgSiN2 as sintering additives. The effects of the Gd2O3/MgSiN2 ratio on the densification, microstructure, mechanical properties, and thermal conductivity of Si3N4 ceramics were systematically investigated. It was found that a low Gd2O3/MgSiN2 ratio facilitated the thermal diffusivity of Si3N4 ceramics while a high Gd2O3/MgSiN2 ratio benefited the densification and mechanical properties. When the Gd2O3/MgSiN2 ratio was 1:1, Si3N4 ceramics obtained an obvious exaggerated bimodal microstructure and the optimal properties. The thermal conductivity, flexural strength, and fracture toughness were 124 W·m−1·k−1, 648 MPa, and 9.12 MPa·m1/2, respectively. Comparing with the results in the literature, it was shown that Gd2O3-MgSiN2 was an effective additives system for obtaining Si3N4 ceramics with high thermal conductivity and superior mechanical properties.  相似文献   

15.
In this study, we synthesized BaZnSi3O8-based compounds with monoclinic structures (P21/a) using a solid-state method. The crystal structure, phase composition, and microwave dielectric properties of BaZnSi3O8-based ceramics were systematically investigated systematically. X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images proved that the maximum solubility of BaZn1-xMgxSi3O8 ranged between 0.3 and 0.4. Rietveld refinement and Phillips–Van Vechten–Levine complex chemical bond theory were used to illustrate the relationship between the microwave dielectric performance and lattice parameters. To further improve the properties, we substituted Ba2+ with Sr2+ in BaZn0.8Mg0.2Si3O8. Ba1-ySryZn0.8Mg0.2Si3O8 remained in a single-phase as y increased from 0 to 1.0. We achieved thermal stability of the resonance frequency of the BaZnSi3O8-based ceramics by adjusting TiO2 to form composite ceramics. After sintering at 1020°C for 5 h, excellent microwave dielectric properties with εr = 7.44, Q×f = 57,400 GHz, and τf = − 0.2 ppm/°C were realized in the SrZn0.8Mg0.2Si3O8+8 wt %TiO2 system.  相似文献   

16.
《Ceramics International》2022,48(24):36638-36643
The Mg2TiO4-xwt% LiF–2CaF2–2B2O3 (LCB, 3.0 ≤ x ≤ 10.0) ceramics were fabricated to study the relationship among LCB additive and the sintering behavior, phase composition, micro-structure and dielectric performance of ceramics in this study. The sintered ceramics are mainly Mg2TiO4 phase, accompanied by small amount of second phase CaTiO3 and Mg3B2O6. They are generated from the chemical reaction of CaF2 and B2O3 with the matrix material, respectively. Appropriate LCB additive significantly enhanced sintering ability and dielectric performance of Mg2TiO4-based ceramics. Sintered at 1175 °C, Mg2TiO4-7.5 wt% LCB ceramics exhibited a dielectric performance: εr of 15.3, Q × f of 32 950 GHz and τf of +1.96 ppm/°C, which is expected to be an alternative material for communication component.  相似文献   

17.
(Sr0.97Eu0.01Dy0.02)Al2O4 persistent luminescence (PersL) ceramics were fabricated by solid-state reactive sintering in vacuum combined with hot isostatic pressing (HIP) using H3BO3 as a sintering additive. The phase composition, microstructure, luminescence properties, trap state, and PersL performance of HIP post-treated (Sr0.97Eu0.01Dy0.02)Al2O4 PersL ceramics were discussed. For the (Sr0.97Eu0.01Dy0.02)Al2O4 PersL ceramics after HIP post-treatment, the initial luminescence intensity of the ceramics reached over 6400 mcd/m2 with simulated daylight irradiation of 1000 lx for 5 min, and the persistent emission decay time > 17 h. This is much better than the SrAl2O4:Eu2+,Dy3+ PersL powders and the other luminescent ceramics. In addition, this method is a solid-state reactive sintering method for synthesizing ceramics, which has the advantages of low cost and simple operation, and is suitable for large-scale, high-volume industrial production.  相似文献   

18.
《Ceramics International》2016,42(3):3745-3750
The process of densification and development of the microstructure of mullite–ZrO2/Y2O3 ceramics from mixture of Al2O3, SiO2, ZrO2 and Y2O3 by gradually adding of α–β Si3N4 nanopowder from 1 to 5 wt% by traditional and spark plasma sintering were investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and some ceramic and mechanical properties. The processes of DTA for all samples are characterised by a low-pitched endo-effect, when gradual mullite formation and noticeable densification at temperatures of 1200–1400 °C is started. It is testified by shrinkage and density both for traditionally and by SPS-sintered samples. The influence of the Si3N4 additive on the density characteristics is insignificant for both sintering cases. For SPS samples, the density reaches up to 3.33 g/cm3, while for traditionally sintered samples, the value is 2.55 g/cm3, and the compressive strength for SPS grows with Si3N4 additives, reaching 600 N/mm2. In the case of traditional sintering, it decreases to approximately 100 N/mm2. The basic microstructure of ceramic samples sintered in a traditional way and by SPS is created from mullite (or pseudo-mullite) crystalline formations with the incorporation of ZrO2 grains. The microstructure of ceramic samples sintered by SPS shows that mullite crystals are very densely arranged and they do not have the characteristic prismatic shape. The traditional sintering process causes the creation of voids in the microstructure, which, with an increasing amount of Si3N4 additive, are filled with mullite crystalline formations.  相似文献   

19.
Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 GHz@14.7 GHz (x = 0) to 150,500 GHz@14.5 GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, τf = ?3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, τf = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies.  相似文献   

20.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号