首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2019,45(14):17376-17381
Air plasma sprayed (APS) 8 wt%-yttria stabilized zirconia (8YSZ) with metastable tetragonal prime phase (t′) has been widely applied as thermal barrier coatings (TBCs) for gas turbine blades because of its outstanding mechanical properties at high temperatures. In the present research, a carefully designed process was used to prepare 8YSZ samples with different phase composition (t′, t and c) simulating the phase degradation of the material during operation conditions. High temperature (1000–1200 °C) bending strength, elastic modulus, and thermal expansion coefficient were measured, which exhibit strong dependence on the phase degradation during heat treatment. Effect of the phase composition on high temperature thermo-mechanical properties and the enhancement of the bending strength have been discussed, providing a new perspective for further improvements.  相似文献   

2.
This work describes the development of transparent high-strength Yttria-Stabilized Zirconia (YSZ) ceramics with ultra-fine grain size utilizing conventional pressure-less densification. Starting with nanoparticles with diameter < 10 nm, it was possible to achieve full densification (>99.5% of theoretical density) at a sintering temperature of 1100–1200 °C. The average grain size of the resulting dense ceramics was 75 nm in 3 mol. % YSZ and 85 nm in 8 mol. % YSZ, showing in-line light transmission of 38% and 51% at a wavelength of 800 nm and average biaxial strength (piston on three balls test on samples of diameter 12 mm and thickness 1 mm) of 1980 MPa and 680 MPa, respectively. The nano-grained structure, absence of color centers, and miniaturization of residual pores enable the excellent light transmission. The high biaxial strength is attributed to the refined microstructure, but also to the martensitic tetragonal-to-monoclinic phase transformation that remains active even in nano-sized zirconia grains.  相似文献   

3.
One of the most compatible coatings, known as yttria-stabilised zirconia polycrystal (YZP) is deposited on metallic Ti alloys due to its excellent hardness and aesthetic value as well as its low affinity for plaques. However, poor bioactivities of YZP and the existence of micro crack propagations due to the aging of YZP may result in spontaneous implant failure thus limiting its clinical use. In this work, YZP coating reinforced titania (TiO2), which is formed via a plasma spray technique was investigated in order to enhance the bioactivity and the mechanical properties of YZP coatings for dental implants. Based on microstructural studies performed on the deposited coating, a distinguished lamellar structure comprising YZP and TiO2 was observed. It was found that the reinforcement of TiO2 in YZP coating significantly reduced the crack due to the improved densities and the lamellar structure. The mechanical properties were also found to improve with 90% of hardness, 45% of adhesion strength and 54% of Young's Modulus with TiO2 addition, which is desirable for dental implants. An in-vitro bioactivity test was then conducted by immersing the coatings in a simulated body fluid (SBF). As a result, an apatite formation was found on the YZP/TiO2 coating surface after 3 days of immersion. Besides, it was verified in an XRD analysis that the crystalline TiO2 was found in a rutile phase which was highly effective in generating apatite (natural mineral in human bones) on YZP coatings, proving that the bioactivities of the coating were significantly improved. Further studies were also performed on the SBF treatment, which took up to 14 days also demonstrated that only a small decrease in hardness was noted, indicating that YZP/TiO2 coatings had reached an excellent mechanical stability.  相似文献   

4.
《Ceramics International》2016,42(7):8190-8197
When used in prosthetic dentistry, zirconia encounters severe durability issues due to low temperature degradation: exposure to humidity results in a transition from tetragonal to monoclinic phase, associated to disruptive integrity loss. Recently it has been shown that size-induced stabilization helps maintaining zirconia in tetragonal form, when the grain size is reduced to the nano-range. Objective of this work is to demonstrate the applicability of High Pressure Field Assisted Sintering (HP-FAST) to the preparation of dense, nanostructured samples of tetragonal yttria stabilized zirconia, with yttria content between 0.5 and 3 mol% and showing resistance to low temperature degradation. The yttria stabilized zirconia nanopowders were prepared by a hydrothermal method. Sintering by HP-FAST was performed at 900 °C in 5 min, under a pressure of 620 MPa. Resistance to low temperature degradation was tested at 134 °C, under vapor pressure, for up to 40 h. Both pristine and aged samples were characterized by X-ray diffraction, high-resolution scanning electron microscopy and nanoindentation tests in continuous stiffness measurement mode. The sintered samples presented a grain size between 20 and 30 nm and low or null monoclinic content. Both parameters resulted unaffected by ageing. The best results in terms of phase composition and mechanical properties have been obtained with the material containing 1.5 mol% of yttria. These results induce to reconsider the use of yttria stabilized zirconia as material for dental prosthetic systems requiring long-term durability.  相似文献   

5.
This work explores the incorporation of graphene-based two-dimensional nanostructures as moisture barriers to delay hydrothermal ageing of yttria-stabilized zirconia and strengthen its use in biomedical applications. Two sets of highly dense zirconia composites incorporating multilayered graphene with very different lateral dimensions, few layer graphene and exfoliated graphene nanoplatelets, were prepared. The effect of the addition of graphene nanostructures on zirconia ageing was investigated by conducting accelerated hydrothermal degradation experiments in an autoclave. An improved resistance to low-temperature degradation and a high tolerance to damage were achieved in the composites compared to those of monolithic zirconia. The incorporation of 1 vol% multilayered graphene was very effective in restricting the hydrothermal degradation. In particular, the composite incorporating exfoliated graphene nanosheets exhibited outstanding resistance to ageing because of their fine dispersion throughout the matrix, which effectively seemed to restrict grain growth and slow the propagation of the transformation front to the ceramic bulk.  相似文献   

6.
《Ceramics International》2017,43(14):11204-11217
The effective thermal conductivity of a composite coating depends on intrinsic thermal conductivity of the constituent phases, its characteristics (size, shape) and volume fraction of porosities. The present study concerns studying the effect of CoNiCrAlY and Al2O3 content on the coefficient of thermal expansion and thermal conductivity of the YSZ (YSZ-CoNiCrAlY and YSZ-Al2O3) based composite coatings developed by thermal spray deposition technique. The coefficient of thermal expansion and thermal conductivity of the composite coatings were measured by push rod dilatometer and laser flash techniques, respectively, from room temperature to 1000 °C. Variation in density, porosity, coefficient of thermal expansion, and thermal conductivity was observed in the composite coatings with the addition of different volume fraction of CoNiCrAlY and Al2O3 powders in YSZ-CoNiCrAlY and YSZ-Al2O3 composites, respectively. Comparison between the theoretical and experimental thermal conductivities showed a mismatch varying from 4% to 58% for YSZ-CoNiCrAlY composite coatings and from 58% to 80% for YSZ-Al2O3 composite coatings. Model based analyses were used to understand the mechanism of thermal conductivity reduction in the composite coatings. It was concluded that the morphology of porosities varied with composition.  相似文献   

7.
Nanocrystalline 8 mol% yttria stabilized zirconia (YSZ) powder has been synthesized by the oleate complex route. Oleate complexes of zirconium and yttrium were formed in the hexane rich layer by the reaction of sodium oleate with zirconyl chloride and yttrium chloride at the interface of the two ternary solutions in water–ethanol–hexane system. The zirconyl oletae and yttrium oleate complexes on heating decomposed to oxide through the formation of carbonate intermediates. The powder obtained by calcination at 600 °C for 2 h was cubic YSZ with surface area of 42 m2/g. The YSZ powder contained primary particles of ∼300 nm size and the primary particles were aggregate of crystallites of 5–10 nm. The compacts prepared from the YSZ powder were sintered to ∼99% TD (theoretical density) at 1400 °C. The sintered YSZ had a low average grain size of 0.73 μm.  相似文献   

8.
The main goal of the current study is evaluation and comparison of thermal shock behavior of plasma-sprayed nanostructured and conventional yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs). To this end, the nanostructured and conventional YSZ coatings were deposited by atmospheric plasma spraying (APS) on NiCoCrAlY-coated Inconel 738LC substrates. The thermal shock test was administered by quenching the samples in cold water of temperature 20–25 °C from 950 °C. In order to characterize elastic modulus of plasma-sprayed coatings, the Knoop indentation method was employed. Microstructural evaluation, elemental analysis, and phase analysis were performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffractometry (XRD) respectively. The results revealed that failures of both nanostructured and conventional TBCs were due to the spallation of ceramic top coat. Thermal stresses caused by mismatch of thermal expansion coefficients between the ceramic top coat and the underlying metallic components were recognized as the major factor of TBC failure. However, the nanostructured TBC, due to bimodal unique microstructure, presented an average thermal cycling lifetime that was approximately 1.5 times higher than that of the conventional TBC.  相似文献   

9.
《Ceramics International》2022,48(16):23365-23380
In this paper, a novel phase-field (PF) model is proposed to study the thermal aging mechanism of single crystalline t'-YSZ. The influences of the initial compositional content of yttria and the initial twin structure of the t' phase on the aging process are systematically discussed. The PF model can recover the modulated structure and nano/micro hybrid structure observed in experiments. The PF simulation results indicate that the initial compositional content of yttria is the most important influential factor of the thermal aging process. Besides that, the transformation strain, the initial twin structure and the anti-phase boundaries (APBs) of the t' phase can also have significant influences on the thermal aging kinetics. The typical spinodal region is more suitable to predict the thermal aging behavior of single domain YSZ. For multi-domain YSZ with initial twin structures and APBs, the spinodal region should be further divided into the kernel region and marginal region. In the kernel region, the thermal aging occurs by spinodal decomposition with the formation of a modulated structure, which is followed by merging and coarsening. In the marginal region and outside the spinodal region, the phase decomposition leads to a hybrid structure with coarse grained cubic phase and fine grained tetragonal phase, which exhibits the characteristics of nucleation and growth. The hybrid structure is consistent with previous experimental observations. It is revealed that the boundaries of the nano sized tetragonal grains evolve from the twin boundaries and APBs. The nucleation-growth mechanism should be properly understood when it is applied to illustrate the evolution process of the hybrid structure. The PF model and the new insights obtained in this study are helpful to understand the thermal aging mechanisms of t'-YSZ.  相似文献   

10.
An organic precursor synthesis of 8 mol% yttria stabilized zirconia (YSZ) powder from Zr–Y composite nitrate solution and sucrose has been studied. Oxidation of sucrose in Zr–Y composite nitrate solution containing excess nitric acid in situ generates hydroxy carboxylic acids that forms a white sol which showed peaks at 1640 cm−1 and 1363 cm−1 in IR spectrum corresponding to hydroxy carboxylic acid complexes of Zr and Y. Precursor mass obtained by drying the sol on calcinations at 600 °C produced loosely agglomerated particles of cubic YSZ. Deagglomerated YSZ contain submicron particles with D50 value of 0.5 μm and the particles are aggregates of nanocrystallites of nearly 10 nm size. Compacts prepared by pressing the YSZ powder sintered to 96.7% TD at 1450 °C. The sintered YSZ ceramic showed an average grain size of 2.2 μm.  相似文献   

11.
The effects of Mn3O4 addition and reductive atmosphere (N2:H2 = 97:3) annealing on the microstructure and phase stability of yttria stabilized zirconia (YSZ) ceramics during sintering at 1500 °C for 3 h in air and subsequent annealing in a reductive atmosphere were investigated. Mn3O4 added 6 mol% YSZ (6YSZ) and 10 mol% YSZ (10YSZ) ceramics were prepared via the conventional solid-state reaction processes. The X-ray diffraction results showed that a single cubic phase of ZrO2 was obtained in 1 mol% Mn3O4 added 6YSZ ceramic at a sintering temperature of 1500 °C for 3 h. A trace amount of monoclinic ZrO2 phases were observed for 1 mol% Mn3O4 added 6YSZ ceramics after annealing at 1300 °C for 60 cycles in a reductive atmosphere by transmission electron microscopy. Furthermore, a single cubic ZrO2 phase existed stably as Mn3O4 added 10YSZ ceramics was annealed at 1300 °C for 60 cycles in reductive atmosphere.  相似文献   

12.
Solar grade silicon can be formed using a YSZ solid oxide membrane (SOM). The SOM membrane is exposed to a complex fluoride flux with dissolved silica at high temperature and electrochemically separated into silicon and oxygen. A failure mode of the SOM membrane by the formation of ‘inner cracks’ was studied, and attributed to yttria depletion in the YSZ, leading to phase transformation from cubic to tetragonal phase. The roles of silica and YF3 in the flux were studied, and it was shown that silica attacks the SOM membrane, while YF3 retards the attack. A detailed mechanism of the yttrium depleted layer (YDL) formation, and its role in the formation of inner cracks is proposed. Based on this study, a new flux composition was designed and tested. The flux composition did not attack the SOM membrane, and Si crystals were produced, demonstrated long-term viability of the Si–SOM process.  相似文献   

13.
Neodymium cerate (Nd2Ce2O7) was laboratory synthesized by solid-state reactions of neodymia and ceria and spray dried to get the feedstock for plasma spraying. Hot corrosion behavior of air plasma sprayed 10% Nd2Ce2O7/yttria stabilized zirconia (YSZ) topcoat was studied in the presence of V2O5 and Na2SO4 salts at 950°C for 10-60 hours. It was observed that due to the presence of relatively higher basic compounds Nd2O3 and CeO2 (form Nd2Ce2O7) than Y2O3 in YSZ changed the reaction dynamics during hot corrosion and the major part of corrosive (NaVO3) was consumed by Nd of Nd2Ce2O7, making NdVO4. The Y2O3 of YSZ contributed in the corrosive reaction partially, relieving majority tetragonal zirconia (t-ZrO2) in topcoat (YSZ). No remarkable cracking was developed in the topcoat even after 60 hours of accelerated hot corrosion, which was attributed to the retention of in-relief t-ZrO2 in YSZ.  相似文献   

14.
《Ceramics International》2015,41(7):8305-8311
Plasma spray physical vapor deposition (PS-PVD) was used to deposit yttria stabilized zirconia (YSZ) coatings with different columnar morphologies by varying the spray distance. Although similar quasi-columnar structures were formed at the spray distances of 600 mm and 1400 mm, the formation mechanisms of particles in the coatings were different. Besides, an electron beam physical vapor deposition (EB-PVD) like columnar coating out of pure vapor was deposited at a spray distance of 1000 mm and the columnar consisted of elongated nano-sized secondary columns. The hardness and Young׳s modulus of the coatings were investigated. Compared to the other two quasi-columnar structures, the EB-PVD like columnar coating exhibited higher hardness (~9.0 GPa ) and Young׳s modulus (~110.9 GPa), mainly due to its low porosity and defect.  相似文献   

15.
Partially stabilized zirconia materials are well known for their combination of high strength and toughness. In this study a new ytterbia samaria co-stabilized zirconia is manufactured by intensive co-milling of zirconia and stabilizer oxides with subsequent consolidation by hot-pressing. Evolution of microstructure, mechanical properties and phase composition are studied with respect to sintering temperature. The material exhibits a transformation dominated fracture behavior and a combination of high strength of up to 1050 MPa, a fracture toughness exceeding 12 MPa√m and an excellent resistance to low temperature degradation.  相似文献   

16.
《Ceramics International》2023,49(8):11865-11874
3Y-TZP ceramics are prepared by solid state method and surface carburization process, and the effect of surface carburization on its the low temperature degradation is studied. The conventional sintered samples completely lost its mechanical properties after aging for 15 h, while the failure time of the surface carburized samples are 300 h. In addition, the nuclear growth rate of the surface carburized samples (αd) and the nucleation rate (Nr) is lower than that of sintered samples, αd plays a dominant role in the degradation process at low temperature and is the key factor determining the aging rate. At the same time, it is found that carbon is dissolved in zirconia lattice in the form of electrically neutral atoms, which will not destroy the original charge balance and produce new oxygen vacancies when entering the interstitial site. More importantly, the precipitation rate of Y3+ from zirconia lattice is the key factor to determine the low-temperature phase transition of tetragonal-monoclinic(T-M). The treatment method of surface carburization has significantly improved the low-temperature degradation performance of 3Y-TZP ceramics, which provides a basis for the application of zirconia ceramics in low-temperature and humid environment.  相似文献   

17.
《Ceramics International》2015,41(7):8785-8790
In this study, 3 mol% yttria stabilized zirconia (3YSZ) is investigated as a SOFC electrolyte alternative to 8 mol% yttria stabilized zirconia (8YSZ). The mechanical and electrochemical properties of both materials are compared. The mechanical tests indicate that the thickness of 3YSZ can be reduced to half without sacrificing the strength compared to 8YSZ. By reducing the thickness of 3YSZ from 150 µm to 75 µm, the peak power density is shown to increase by around 80%. The performance is further enhanced by around 22% by designing of novel electrode structure with regular cut-off patterns previously optimized. However, the cell with novel designed 3YSZ electrolyte exhibits 30% lower maximum power density than that of the cell with 150 µm-thick standard 8YSZ electrolyte. Nevertheless, the loss in the performance may be tolerated by decreasing the fabrication cost revealing that 3YSZ electrolyte with cut-off patterns can be employed as SOFC electrolyte alternative to 8YSZ.  相似文献   

18.
Yttria (8 mol%) stabilized zirconia (8YSZ) photocurable slurry is the basis for stereolithography-based 3D (SLA) printed structured electrolyte support for monolithic solid oxide fuel cell (SOFC) stack. The curing resin with trifunctional trimethylolpropane triacrylate and 1,6-hexanediol diacrylate (TMPTA/HDDA) mass ratio of 1.5:8.5 and 1 wt% of photoinitiator provided excellent curing performance and low viscosity of 2.1 mPa·s. Stable 8YSZ photocurable slurry possessing high solid content of 43 vol% and low viscosity of 3.6 Pa·s at 30 s?1 shear rate were obtained, without particle sedimentation after 180-day stability test. The activation energy of 8YSZ fabricated by 3D printing method was 0.87 eV, similar to that by dry-pressing method. The 3D printed monolithic 3-tube SOFC stack exhibited a peak power density of 230 mW·cm?2 at 850 °C. This research proves the great potential of 3D printing technology to prepare monolithic SOFC stack, paving the way to develop SOFCs for practical applications.  相似文献   

19.
ABSTRACT

In the clinical application of ceramic prostheses, micro-leakage, porcelain chipping, low-treatment efficiency and quality uncertainty have appeared as the major problems that dentists encountered. However, the full-contour zirconia monolithic prostheses have the potentials for solving the problems. It appears that the full-contour zirconia monolithic prostheses produced through the fully digital workflow can ensure that the restorations can be closely aligned with the abutment and be easy to adjust and to wear, thus to assure the stability and accuracy of occlusal, which are crucial to the ultimate integration of the full-contour zirconia monolithic prostheses by avoiding unfavourable grinding. The newly developed full digital approach can greatly simplify the previous workflow that involved many manual operations. It improves not only the treatment efficiency but also the reliability of the prostheses by avoiding manual operational mistakes.  相似文献   

20.
Zirconia ceramics stabilized using 10 mol% CeO2 and 1 mol% CaO were studied with the addition of small amounts of α-alumina. The elaboration process of five different compositions was done by wet mixing of powders using 0, 2.5, 5, 10, and 15 wt% alumina, followed by pressing and sintering. The 2.5 wt% alumina addition reduced the grain size, which led to an increase in hardness and the 10 wt% alumina samples showed the maximum mechanical strength (around 1000 GPa), measured by the ball on three balls bending test. The fraction of monoclinic phase around Vickers indentations is reduced by the presence of alumina, but the transformability and resistance to cracking by Vickers indentations are still much higher than for 3Y-TZP. The hydrothermal degradation resistance was also improved by the addition of alumina, with only a very small increase of monoclinic phase of about 1 % in volume after aging for 30 h in standard autoclaved conditions. The enhancement in mechanical properties and LTD resistance leads the path to explore the use of these materials in biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号