首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

2.
The temperature resistance of thermal barrier coatings (TBCs) has increased with the continuous development of the aviation industry. This increase in temperature resistance has resulted in a new challenge for TBCs, namely, calcium-magnesium-aluminum-silicate (CMAS) attack. As a new generation of thermal barrier coating candidate materials, Sm2Zr2O7 has good CMAS resistance properties. However, this material cannot meet the actual needs of aero-engines. Therefore, a change in the structure of Sm2Zr2O7 was used to improve the CMAS resistance properties in this paper. The relationship between the grain size of the ceramic and its resistance to CMAS penetration in the microstructure was investigated in detail.Nonpressure and SPS sintering processes were used to prepare Sm2Zr2O7 ceramics with different grain sizes that were then tested at high temperatures with CMAS. With the extension of penetration, the depth of CMAS penetration in microscale Sm2Zr2O7 ceramics increased sharply with increasing reaction time, while the penetration depth of CMAS into nanoscale Sm2Zr2O7 ceramics increased slowly. After 48 h of penetration, the penetration depth of the microscale Sm2Zr2O7 ceramics was 86 μm, and the penetration depth of the nanoscale Sm2Zr2O7 ceramics was only 47 μm. Compared with the microscale Sm2Zr2O7 ceramics, the nanoscale Sm2Zr2O7 ceramics had better CMAS resistance because the lower diffusion activation energy of the nanocrystalline grains accelerated the formation of a dense barrier layer.  相似文献   

3.
Calcium–magnesium–alumina–silicate (CMAS) corrosion resistance is an important issue on the design of next-generation thermal battier coatings. As one of the promising thermal battier coatings, the lanthanum zirconate coating has attracted continuous attention. In this work, three lanthanum zirconate coatings with different La/Zr composition, i.e., La1.8Zr2.2O7.1, La2Zr2O7, and La2.5Zr1.5O6.75, are fabricated by laser-enhanced chemical vapour deposition, and their resistance to CMAS corrosion at 1250?°C is investigated. Among them, La2.5Zr1.5O6.75 shows the best CMAS corrosion resistance because increased La content is beneficial to the formation of a dense and continuous apatite Ca2La8(SiO4)6O2 layer, which effectively slows down the subsequent molten CMAS penetration. This study clarifies the significant role of rare earth on CMAS corrosion resistance and is expected to guide the future design of rare-earth-based thermal battier coatings through composition tailoring.  相似文献   

4.
The CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of thermal barrier coatings (TBCs) is a crucial problem for the lifetime of blades and vanes of jet engine and gas turbine at high operating temperature. Although many new alternative materials for TBCs have been developed in recent years, their application is limited by the CMAS corrosion. On the other hand, the composition difference of CMAS between regions makes solving this problem very difficult. Therefore, in this study, the yearly composition changes of sand-dust around Beijing area were investigated. The high-temperature corrosion behavior of air-plasma-sprayed 8YSZ and newly developed (LaxYb1−x)2Zr2O7 TBCs by the representative sand-dust of Beijing was investigated. In comparison, a universally used CaO-riched composition of simulated silicate deposit was also adopted for the TBCs corrosion test. It is found that the (LaxYb1−x)2Zr2O7 TBCs performs much better anti-corrosion behavior than that of 8YSZ, both by Beijing sand-dust and simulated one. Particularly, Yb2Zr2O7 TBCs appear to be the optimum material against silicate deposits attack. The mechanism of silicate deposits corrosion has also been discussed.  相似文献   

5.
Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, during aero engine operation, environmentally ingested airborne particles, which includes mineral debris, sand dust and volcanic ashes get ingested by the turbine with the intake air. As engine temperatures increase, the finer debris tends to adhere to the coating surface and form calcium magnesium alumino-silicate (CMAS) melts that penetrate the open void spaces in the coating. Upon cooling at the end of an operation cycle, the melt freezes and the infiltrated volume of the coating becomes rigid and starts to spall by losing its ability to accommodate strains arising from the thermal expansion mismatch with the underlying metal. The state-of-the-art ZrO2-7-weight% Y2O3 (YSZ) coatings are susceptible to the aforementioned degradation. Rare-earth zirconates have generated substantial interest as novel thermal barrier coatings (TBC) based primarily on their intrinsically lower thermal conductivity and higher resistance to sintering than YSZ. In addition, the pyrochlore zirconates are stable as single phases at up to their melting point. La2Zr2O7 (LZ) is one among such candidates. Hence, the present study focusses on the comparison of cyclic molten CMAS infiltration behaviour of the base metal Inconel 738 (BM), the bond coat NiCrAlY (BC), the duplex YSZ, the LZ coating and a five layered coated specimen with LZ as top layer. Among those coatings mentioned above, the five layer coated specimen showed excellent CMAS infiltration resistance under thermal cycling conditions.  相似文献   

6.
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O7 (Gd2Zr2O7-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O7 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina- silicate (CMAS) corrosion tests were carried out at 1250 °C for 1–8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O7-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings.  相似文献   

7.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

8.
《Ceramics International》2022,48(17):24402-24410
Zr6Ta2O17 has higher fracture toughness, better phase stability, thermal insulation performance and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (8 YSZ, 7–8 wt%) at temperatures above 1200 °C. However, the thermal expansion coefficients between Zr6Ta2O17 coating and bond coating do not match well. A double-ceramic-layer design is applied to alleviate the thermal stress mismatch. The Zr6Ta2O17/8 YSZ double-ceramic-layer thermal barrier coatings (TBCs) are prepared by atmospheric plasma spraying (APS). During the thermal shock test, Zr6Ta2O17/8 YSZ double-ceramic-layer TBCs exhibit a better thermal shock resistance than 8 YSZ and Zr6Ta2O17 single-layer TBCs. The thermal shock performance and failure mechanism of TBCs in the thermal shock test are investigated and discussed in detail.  相似文献   

9.
The degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) attack has become increasingly dramatic. Y4Al2O9 ceramic, a new potential TBC candidate, has received an increasing attention. In this study, porous Y4Al2O9 ceramic pellets, instead of actual TBCs, are used to investigate the CMAS corrosion resistance at 1250 °C. Results indicate that Y4Al2O9 reacts with CMAS melt to form an impervious sealing layer mainly containing Ca-Y-Si apatite, which could mitigate CMAS further penetration. Once the sealing layer formed, further reaction would occur above the layer accompanying by the recession of sealing layer. This process is probably related to a solid state diffusion.  相似文献   

10.
In this contribution, the ZrO2-doped YTaO4 (ZrxY0.5−x/2Ta0.5−x/2O2 (x = 0, 0.1, 0.2, 0.28)) are proposed as potential CMAS-resistant materials for TBCs. The corrosion behavior of those materials under CMAS attack are investigated from thermodynamics and kinetics. The results show that all compositions have the much better CMAS resistance than the classical Gd2Zr2O7. After 50 h corrosion at 1300℃, the corrosion depth in ZrO2-doped YTaO4 bulks is about 50–80 µm (for a 20 mg/cm2 CMAS deposition) in contrast with ~140 µm in Gd2Zr2O7 bulk. The CMAS corrosion mechanism of ZrO2-doped YTaO4 is elucidated, and the excellent CMAS resistance is attributed to the rapid formation and followed thickening of dense reaction product layer. Furthermore, the effects of ZrO2 doping content on CMAS resistance of YTaO4 is discussed. It is elucidated that ZrO2 doping can inhibit the precipitation of apatite, decrease the consumption of CMAS melt, and change the morphology of dense reaction layer. In summary, minor doping of ZrO2 can ensure the excellent short- and long-term CMAS resistance, but heavy doping of ZrO2 will degrade the long-term CMAS resistance.  相似文献   

11.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   

12.
Calcium-magnesium-alumino-silicates (CMAS) corrosion in thermal barrier coatings (TBCs) is becoming more serious with increasing operation temperature of turbine engines. Here, we report an equimolar YO1.5 and TaO2.5 co-doped ZrO2 (Zr0.66Y0.17Ta0.17O2, ZYTO) as a potential CMAS-resistant material for TBCs, which shows a significantly enhanced CMAS resistance than the conventional 17 mol% YO1.5-stabilized ZrO2 (17YSZ). After exposure at 1300°C for 100 hours, the CMAS infiltration depth in ZYTO bulk is ~80 μm (for a 20 mg/cm2 CMAS deposition), in contrast to ~700 μm in 17YSZ bulk (50 hours). Compositional and morphological analyses on the CMAS reaction zone reveal that the excellent CMAS resistance of ZYTO originates from the uniform corrosion through grain and grain boundary, along with densification of the reaction layer. The high CMAS infiltration rate of 17YSZ is attributed to the severe dissolution and infiltration through grain boundary. The reaction mechanisms of CMAS with ZYTO and 17YSZ bulks are discussed and a strategy of enhancing the CMAS resistance is proposed for ZrO2-based TBC materials.  相似文献   

13.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

14.
《Ceramics International》2023,49(18):29449-29458
In this study, Zr6Ta2O17 ceramics with porous, fine-grained, and coarse-grained structures were obtained via in situ solid-state reactions, and their mechanical characteristics were examined. The significantly low thermal conductivity of dense Zr6Ta2O17 ceramics (1.0 W m−1 K−1) was due to the grain boundary gap caused by superstructured grains. A calcium–magnesium–alumina–silicate (CMAS) corrosion experiment demonstrated that the formation of an interlocking structure composed of ZrO2, CaTa2O6, and ZrSiO4 prevented the penetration of CMAS impurities, thereby revealing the application potential of porous ceramics. In dense Zr6Ta2O17 ceramics, the low-volume diffusion induced by an entropy-stable structure is conducive for corrosion resistance; however, the grain boundary is vulnerable to attacks by CMAS, which can be mitigated by the formation of a coarse crystal structure, thereby effectively improving the corrosion performance. This work provides a critical perspective on the thermal barrier coating design of A6B2O17 (A = Zr, Hf; BNb, Ta) ceramics.  相似文献   

15.
《Ceramics International》2020,46(7):9311-9318
The corrosion of YSZ TBCs attacked by calcium–magnesium–aluminosilicate (CMAS) is a serious problem. Yttrium tantalite (YTaO4), a new kind of potential thermal barrier ceramic material, was expected to replace the YSZ to manufacture the TBCs because of its great thermophysical characteristics. In this study, porous YTaO4 ceramic pellets, instead of actual TBCs, were used to investigate the CMAS corrosion resistance at 1250 °C. Results indicated that CMAS couldn't cover the whole surface of YTaO4 pellets homogeneously because of low wettability between liquid CMAS and YTaO4, in addition, there was almost no reaction layer after 4 h reaction. The XRD results showed that M-YTaO4, M′-YTaO4, Ca2Ta2O7 and Y2Si2O7 were the main four phases after reaction and there was no phase containing the elements of Mg and Al. Compared with YSZ TBCs, this new kind of potential thermal barrier ceramic material showed well resistance to CMAS corrosion.  相似文献   

16.
《Ceramics International》2022,48(21):31790-31799
Sr(Zr1-2xCexGdx)O3-0.5x (x = 0, 0.05, 0.1 and 0.15) ceramics were prepared by pressureless sintering using powders that were synthesized by solid-state reaction. The mechanical properties and calcium–magnesium–alumino–silicate (CMAS) early corrosion behaviour of the prepared ceramics were reported. The mechanical properties of rare-earth-doped SrZrO3 improved significantly. The reaction products of the Sr(Zr1-2xCexGdx)O3-0.5x ceramics after CMAS corrosion were similar: zirconia, SrAl2O4, akermanite, and anorthite. The mechanism of CMAS corrosion resistance is summarized as follows: elemental Sr easily enters the CMAS melt, because of its high diffusivity, and promotes crystallization. Rare-earth elements can prevent melt infiltration because of their low diffusivity.  相似文献   

17.
A novel negative temperature coefficient material based on lanthanum zirconate ceramics was proposed for high-temperature applications. This material was synthesized through a solid-state reaction by sintering at 1923 K for 10 h in air. The X-ray diffraction and scanning electron microscopy results confirmed that La2Zr2O7 ceramics exhibited a pyrochlore phase with a relative density of 98.2 %. The resistance–temperature characteristics of the material revealed that La2Zr2O7 ceramics exhibited an NTC feature within the broad temperature range of 973–1773 K in addition to maintaining high thermal constant B, and resistivity to ensure good sensitivity at high temperatures. These properties, along with high ceiling temperature, unique oxygen insensitivity, and excellent ageing coefficient of <0.7 % at 1773 K, render La2Zr2O7 ceramics a promising candidate as thermistor materials with high-temperature NTC.  相似文献   

18.
Thermal barrier coatings (TBCs) are widely used as insulating layers to protect the underlying metallic structure of gas turbine blades. However, the thermal cycling performance of TBCs is affected by their complex working environments, which may shorten their service life. Previous studies have shown that preparing a mesh structure in the bonding layer can relieve thermal stress and improve the bonding strength, thereby prolonging the service life of TBCs. In this paper, a micromesh structure was prepared on the surface of the bonding layer via wet etching. The microstructure and failure mechanism of the micromesh TBCs after CMAS (CaO-MgO-Al2O3-SiO2) thermal erosion were investigated. Numerical simulation was combined with thermal shock experiments to study the stress distribution of the micromesh-structured TBCs. The results showed that the circular convex structure can effectively improve the CMAS corrosion resistance and thermal shock resistance of TBCs.  相似文献   

19.
Emerging of high-entropy ceramics has brought new opportunities for designing and optimizing materials with desired properties. In the present work, high-entropy rare-earth zirconates (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 and (Yb0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 are designed and synthesized. Both high-entropy ceramics exhibit a single pyrochlore structure with excellent phase stability at 1600 °C. In addition, the Yb-containing system possesses a high coefficient of thermal expansion (10.52 × 10?6 K-1, RT~1500 °C) and low thermal conductivity (1.003 W·m-1 K-1, 1500 °C), as well as excellent sintering resistance. Particularly, the Yb-containing system has significantly improved fracture toughness (1.80 MPa·mm1/2) when compared to that of lanthanum zirconate (1.38 MPa·mm1/2), making it a promising material for thermal barrier coatings (TBCs) applications. The present work indicates that the high-entropy design can be applied for further optimization of the comprehensive properties of the TBCs materials.  相似文献   

20.
《Ceramics International》2019,45(16):19710-19719
Because gas turbine engines must operate under increasingly harsh conditions, the degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) is becoming an urgent issue. Mullite (3Al2O3·2SiO2) is considered a potential material for CMAS resistance; however, the performance of mullite in the presence of CMAS is still unclear. In this study, mullite and Al2O3–SiO2 were premixed with yttria stabilized zirconia (YSZ) in different proportions, respectively. Porous ceramic pellets were used to conduct CMAS hot corrosion tests, and the penetration of molten CMAS and its mechanism were investigated. The thermal and mechanical properties of the samples were also characterized. It was found that the introduction of mullite and Al2O3–SiO2 mitigated the penetration of molten CMAS into the pellets owing to the formation of anorthite, especially at 45 wt% mullite/55 wt% YSZ. Compared with Al2O3–SiO2, mullite possesses a higher chemical activity and undergoes a faster reaction with CMAS, thus forming a sealing layer in a short time. Additionally, the thermal expansion coefficient, thermal conductivity, and fracture toughness of different samples were considered to guide the architectural design. Considering the CMAS corrosion resistance, thermal and mechanical performance of TBCs systematically, a TBC system with a multilayer architecture is proposed to provide a theoretical and practical basis for the design and optimization of the TBC microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号