首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interface engineering is essential for achieving fascinating interfacial functionalities in a single all-oxide-interface-based device. In the present work, a sandwich structure (Pb0.94La0.06(Zr0.95Ti0.05)O3 (PLZT)/HfO2/ Pb0.94La0.06(Zr0.95Ti0.05)O3) was fabricated via a chemical solution approach. A distinct “ferroelectricity-like” behavior with high Pmax (~ 80 μC/cm2) and Pr (~ 36 μC/cm2) is demonstrated. The dielectric HfO2 thin layer presents a tetragonal symmetry structure, which stabilizes a slight distorted structure of the upper PLZT layer (PLZT(T)) with a= 4.19(9) Å, b= 4.10(6) Å, β ~ 91.04?. In PLZT(T), the ferroelectric (FE) phase is identified as the matrix embedded with a small amount of AFE nanodomains, while the bottom PLZT layer (PLZT(B)) exhibits typical AFE incommensurately modulated structures. The near-interface structures in both PLZT layers are characterized by ferroelectric polarizations with head-to-tail configuration across the heterointerface. Such discontinuous, downward polarizations support the accumulation of oxygen vacancies at the heterointerface that facilitate the local polarization enhancement. It is the combination effect of stable ferroelectric polarization in the PLZT(T) layer, interfacial oxygen vacancies and large surface to volume ratio that leads to the superior polarization performance of the antiferroelectric sandwich structure. It indicates that interface engineering is a feasible approach to manipulate the ferroic behavior.  相似文献   

2.
《Ceramics International》2020,46(14):22550-22556
The 10 nm thick yttrium doped hafnium oxide (Y:HfO2) thin films, prepared by chemical solution deposition which using all-inorganic aqueous salt reagents, were fabricated on Si (100) substrates. The crystalline structure, chemical composition and ferroelectric properties of thin films, annealed in protection atmosphere of Air, Ar and N2, were examined. Result showed that the crystalline structure and ferroelectric properties of films exhibited a strong annealing protection atmosphere dependence. When compared to annealing protection atmosphere of Air and Ar, the films with the N2 exhibited lowest m-phase fraction of 19.4%, and the highest oxygen vacancy percentage content of 3.06%, accompanied with the highest relative permittivity of 50.9 and the remanent polarization of 14.6 μC/cm2. These excellent ferroelectric properties were correlated with asymmetric orthorhombic phase and the concentration of oxygen vacancy introduced from the nitrogen doping concentration.  相似文献   

3.
《Ceramics International》2022,48(4):5239-5245
Ta-doped Bi3.25La0.75Ti3O12(BLTT)/ZnO films were fabricated on Pt(111)/Ti/SiO2/Si substrates by a magnetron sputtering method. Firstly, ZnO crystal thin films were grown on the substrates by a reactive sputtering method. Then, BLTT thin films were deposited on the ZnO layers at room temperature and post-annealed at 600 °C. The micromorphology, ferroelectric and dielectric properties of BLTT/ZnO films were analyzed. The XRD analysis shows that ZnO buffer layer significantly reduces the crystallization temperature of BLTT thin film. The TEM results show that lamellar BLTT grains are grown on ZnO layer at a certain angle with few elements diffusion at the interface of ZnO phase and Bi4Ti3O12 phase. The ferroelectric properties indicate that BLTT/ZnO films exhibit different remanent polarization and coercive fields under electric field with different directions. The novel mechanism of tailoring ferroelectric properties may open new possibilities for designing special ferroelectric devices.  相似文献   

4.
In this study, tailoring the microstructures and ferroelectric(FE)/antiferroelectric(AFE) properties of nanoscale ZrO2 thin films is demonstrated with an intentional introduction of sub-nanometre interfacial layers. The ferroelectricity of ZrO2 thin films is significantly enhanced by the HfO2 interfacial layers, while the TiO2 interfacial layers lead to a dramatic transformation of ZrO2 from ferroelectricity into antiferroelectricity. The HfO2 and TiO2 interfacial layers boost the formation of the polar orthorhombic phase with (111)-texture and the non-polar tetragonal phase with (110)-texture in the FE/AFE ZrO2 thin films, respectively, as evidenced by grazing incidence, out-of-plane, and in-plane X-ray diffraction measurements. Furthermore, the modulation of ferroelectricity and antiferroelectricity of nanoscale ZrO2 thin films by the HfO2/TiO2 interfacial layers can be achieved without high-temperature annealing, which is highly advantageous to process integration. The findings demonstrate the important role of the interfaces in the effective tuning of FE/AFE properties of nanoscale thin films.  相似文献   

5.
《Ceramics International》2022,48(5):6131-6137
In this work, the ferroelectric characteristics of ZrO2 thin films grown on ITO-coated glass have been investigated. The ferroelectric nature of the ZrO2 films has been studied by polarization-electric field (P-E) hysteresis loops and found to be optimum for the films processed by rapid thermal annealing at 600 °C. The increase in the annealing temperature improves the ferroelectric properties through the increase of the in-plane strain that causes the formation of the ferroelectric orthorhombic phase. The formation of the orthorhombic phase was confirmed through high-resolution transmission electron microscopy. The effect of the electric field on the polarization switching kinetics of ZrO2 films has been investigated revealing that the switching kinetics follows the nucleation limited switching (NLS) model. The activation fields estimated from the peak values of the polarization currents (im) and the time (tm) at which im occurs are in good agreement with the values obtained from the switching characteristic time of the NLS model. This work paves the way towards the integration of (pseudo)-binary oxide thin films on cheap substrates like glass for the next-generation of non-volatile memories.  相似文献   

6.
《Ceramics International》2020,46(13):21196-21201
In this work, TiO2/ZrO2 bilayer thin film was prepared on fluorine doped tin oxide (FTO)/glass substrates by using a simple and low-cost chemical solution deposition method. Reproducible bipolar resistive switching (RS) characteristics in Au/TiO2/ZrO2/FTO/glass devices are reported in this work. TiO2/ZrO2 bilayer thin films prepared in this work shows reversible bipolar resistive switching and unidirectional conduction performances under applying voltage and these special performances of TiO2/ZrO2 bilayer thin films was first reported. Obvious resistive switching performance can be observed after setting a compliance current, the ratio of high/low resistance reached about 100 at a read voltage of +0.1V and −0.1V and the RS properties showed no obvious degradation after 100 successive cycles tests. The resistive switching characteristics of Au/TiO2/ZrO2/FTO/glass device can be explained by electron trapping/detrapping related with the vacancy oxygen defects in TiO2/ZrO2 bilayer thin film layer. According to slope fitting, the main conduction mechanisms of the sample are Ohmic and Space charge limited current mechanism.  相似文献   

7.
《Ceramics International》2016,42(8):9577-9582
In the current study, a series of lanthanide ions, Tm, Yb and Lu, were used for doping at the Bi-site of the Aurivillius phase Na0.5Bi4.5Ti4O15 (NaBTi) to investigate the structural, electrical and ferroelectric properties of the thin films. In this regard, Na0.5Bi4.5Ti4O15 and the rare earth metal ion-doped Na0.5Bi4.0RE0.5i4O15 (RE=Tm, Yb and Lu, denoted by NaBTmTi, NaBYbTi, and NaBLuTi, respectively) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Formations of the Aurivillius phase orthorhombic structures for all the thin films were confirmed by X-ray diffraction and Raman spectroscopic studies. Based on the experimental results, the rare earth metal ion-doped Na0.5Bi4.0RE0.5Ti4O15 thin films exhibited a low leakage current and the improved ferroelectric properties. Among the thin films, the NaBLuTi thin film exhibited a low leakage current density of 6.96×10−7 A/cm2 at an applied electric field of 100 kV/cm and a large remnant polarization (2Pr) of 26.7 μC/cm2 at an applied electric field of 475 kV/cm.  相似文献   

8.
Ferroelectricity in pure zirconia (ZrO2) thin films, manufactured on Si (100) substrates via the chemical solution deposition method using all-inorganic aqueous salt precursor, has been demonstrated for the first time. The influence of thickness on the crystalline structure and ferroelectric properties of the thin films were measured and showed that they were strongly affected by the film thickness. The structural data indicated that as the film thickness increased from 30 nm to 50 nm, the m-phase fraction increased, and a phase transition from orthorhombic to cubic and then tetragonal occurred near the main diffraction peak of 30.7°. The lowest m-phase fraction of 15.4% was obtained in the pure ZrO2 film with a thickness of 30 nm, and after 103 field cycling, it exhibited the highest relative permittivity of 39.6 as well as the highest residual polarization of 8.5 μC/cm2.  相似文献   

9.
《Ceramics International》2017,43(13):10341-10346
Lead-free Ga0.8Fe1.2O3/Bi0.5(K0.15Na0.85)0.5TiO3 (GFO/BKNT) bilayer multiferroic composite films were fabricated on Pt(100)/Ti/SiO2/Si substrates via sol-gel methods. The microstructure, domain structure, ferroelectric, piezoelectric, magnetic properties as well as magnetoelectric coupling effect were investigated for the composite films at room temperature. Well-defined interfaces between GFO and BKNT layers and clear electric domain structures are observed. A strong magentoelectric effect is obtained with magnetoelectric voltage coefficient of αE=30.89 mV/cm Oe, which is attributed to excellent ferroelectric, piezoelectric, and magnetic properties, as well as the coupling interaction between ferromagnetic GFO and ferroelectric BKNT phases for lead-free bilayer composite films. Besides, GFO and BKNT demonstrate the similar perovskite structure with well lattice matching, which endows the outstanding coupling and fascinating magnetoelectric properties. The present work opens up the opportunity of lead-free magnetoelectric composite films for both further fundamental studies and practical device applications such as sensors, transducers and multistate memories.  相似文献   

10.
HfO2 based binary ferroelectric oxides are promising candidate for nonvolatile memory devices due to their compatibility with the current Si-based technology. In this work, Sr doped HfO2 (Sr:HfO2) ferroelectric thin films with Sr concentration from 0% to 10?mol% were prepared on the platinum electrodes by metallo-organic decomposition (MOD). It was demonstrated that uniform Sr:HfO2 thin films with extremely low roughness can be achieved and crystallized by MOD under a 700?°C annealing process. A wake-up stage was believed more essential for the ferroelectricity of the MOD derived Sr:HfO2 thin film, since the remnant polarization of 13.3 µC/cm2 and high dielectric constant of 30 were obtained after 105 cycling tests. The transformation from monoclinic phase to cubic phase was observed with increasing the Sr concentration and the thickness of the films. X-ray photoelectron spectroscopy analysis confirmed the bonding type of O-Hf-O and O-Sr-O bonds in the film. The microscopic crystal structure of ferroelectric orthorhombic phase was observed by high resolution transmission electronic microscope. The intrinsic ferroelectricity of Sr:HfO2 film was demonstrated by the hysteresis polarization-voltage loops and distinct current peaks in the current-voltage curve. Stable domain structure and its switching dynamics were monitored by piezoresponse force microscopy, indicating the native polarization of Sr:HfO2. This work will provide a controllable routine to fabricate ferroelectric HfO2 based thin films using MOD method.  相似文献   

11.
We report on the structure, dielectric, ferroelectric, and photoluminescent properties of Sm3+-doped Bi4Ti3O12 thin films which were prepared on fused silica and Pt/Ti/SiO2/Si substrates by sol-gel method. The X-ray diffraction analysis confirmed that the Bi4-xSmxTi3O12 (BSmT) thin films were well crystallized in layered perovskite structure without any secondary phase. Raman spectra indicated that the structure of BSmT thin films was significantly distorted because of the Sm3+ doping. An appropriate doping amount of Sm3+ ions leads to obvious enhancement in ferroelectric and dielectric properties of BSmT thin films due to structure distortion and reduction in defects. In addition, the BSmT thin films also show orange-red color emission at 601?nm and long florescence lifetime (> 0.6?ms). This study indicated that lead-free BSmT thin films, which are featuring good electrical and photoluminescent properties, may have potential applications in integrated optoelectronic devices.  相似文献   

12.
In this work, we introduced a simple solution processing method to prepare yttrium (Y) doped hafnium oxide (HfO2) based dielectric films. The films had high densities, low surface roughness, maximum permittivity of about 32, leakage current < 1.0 × 10?7 A/cm2 at 2 MV/cm, and breakdown field >5.0 MV/cm. In addition to dielectric performance, we investigated the influence of YO1.5 fraction on the electronic structure between Y doped HfO2 thin films and silicon (Si) substrates. The valence band electronic structure, energy gap and conduction band structure changed linearly with YO1.5 fraction. Given this cost-effective deposition technique and excellent dielectric performance, solution-processed Y doped HfO2 based thin films have the potential for insulator applications.  相似文献   

13.
《Ceramics International》2017,43(16):13063-13068
PbTiO3 (PTO), Pb(Mn0.1Ti0.9)O3 (PMTO), Pb(Sr0.1Ti0.9)O3 (PSTO), and Pb(Zr0.1Ti0.9)O3 (PZTO) were prepared on an indium tin oxide (ITO)/glass substrate by a sol-gel method. PTO, PMTO, PSTO, and PZTO films exhibited energy band gaps of 3.55 eV, 3.63 eV, 3.59 eV, and 3.66 eV, respectively. All these films generated high photocurrents due to high shift currents, because carrier migration channels were successfully introduced by a lattice mismatch between the films and ITO substrates. The PMTO thin film exhibited the best ferroelectric and photovoltaic properties, with a photovoltage of 0.74 V, a photocurrent density of 70 μA/cm2, and a fill factor of 43.34%, which confirms that shift current and ferroelectric polarization are two main factors that affect the ferroelectric photovoltaic properties. The PSTO, PZTO, and PTO thin films displayed space-charge-limited current (SCLC) when the electric field strength was below 10 kV/cm, and these three films broke down when the electric field strength was above 10 kV/cm. Analysis of the shift current mechanism confirmed that the breakdown of the PZTO and PSTO thin films resulted from Pool Frenkel emission current. The PMTO thin film displayed SCLC in the test range, which indicates that doping with Mn could inhibit defect formation in ferroelectric thin films.  相似文献   

14.
《Ceramics International》2020,46(7):9129-9135
This work presents the effects of sintering temperature ranging from 1200 °C to 1300 °C at intervals of 20 °C on the crystal structure, ferroelectric properties, and electrocaloric effect (ECE) of Pb0.8Ba0.2ZrO3. Samples sintered at 1240 °C, 1260 °C, and 1280 °C have large remanent polarization and small coercive field. Meanwhile, samples sintered at 1260 °C, 1280 °C, and 1300 °C possess large breakdown field strength. Samples sintered at 1260 °C for 4 h exhibit the optimal ferroelectric properties. Antiferroelectricity-ferroelectricity (AFE-FE) phase transition occurs at room temperature T1 (279 K). Directly examining ECE at this temperature is meaningful, and the temperature change is 0.068 K at approximately 60 °C and 30 kV/cm. Results laid the foundation for studying the performance of ferroelectric and ECE within this phase-transition temperature range and provide a reference for new solid-state refrigeration technology.  相似文献   

15.
Flexural tensile and compressive constraints were applied mechanically to the 7.5 nm thick HfO2 films on Si substrates to investigate the influences of stress on the Si outward emission behavior in Si/HfO2 during annealing. The constraint stress inhibited further growth of the interfacial layer (IL) between HfO2 and Si, suppressing the IL‐growth‐induced Si outward emission. This fact was associated with atomic rearrangement that was induced during constrained annealing, resulting in the formation of a robust HfO2 layer with low oxygen vacancy. Such an HfO2 layer effectively suppressed the inward diffusion of oxygen, the IL growth and the Si out‐diffusion.  相似文献   

16.
Lead-free ferroelectric Pr3+-doped (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x?=?0–0.5) (hereafter abbreviated as Pr-NBT-xSTO) thin films were prepared on Pt/Ti/SiO2/Si and fused silica substrates by a chemical solution deposition method combined with a rapid thermal annealing process at 700?°C, and their structural phase transition, dielectric, ferroelectric, and photoluminescent properties were investigated as a function of STO content. Raman analysis shows that with increasing STO content, the phase structures evolve from rhombohedral phase to coexistence of rhombohedral and tetragonal phases (i.e. morphotropic phase boundary), and then to tetragonal phase. The structural phase transition behavior has been well confirmed by temperature- and frequency- dependent dielectric measurements. Meanwhile, the variation in photoluminescence intensity of Pr3+ ions with different STO content in the NBT-xSTO thin films also indicates that there exists a clear structural phase transition when the film composition is close to the morphotropic phase boundary. Superior dielectric and ferroelectric properties are obtained in the Pr-NBT-0.24STO thin films due to the formation of morphotropic phase boundary. Our study suggests that Pr-NBT-xSTO thin films be promising multifunctional materials for optoelectronic device applications.  相似文献   

17.
《Ceramics International》2016,42(11):13061-13064
Polycrystalline Bi3.15Nd0.85Ti3O12 (BNT) thin films were prepared on Pt/Ta/glass substrates by a pulsed laser deposition method. X-ray diffraction measurements revealed that the BNT thin films were preferentially oriented along the (117) direction although they possessed a polycrystalline structure. Good ferroelectric properties of the BNT thin film were observed with a remnant polarization of 13 μC/cm2 (2 Pr ~26 μC/cm2). The fatigue resistance test exhibited that the ferroelectric polarization of the BNT thin film degraded significantly after around 109 switching cycles, which can be attributed to its crystal structure. We investigated the surface morphology and ferroelectric domain structure by atomic force microscopy (AFM) and piezoresponse force microscopy (PFM), respectively. Interestingly, mixed grains consisting of long and circular shapes were observed on the BNT film surface, which corresponded to a- and c-axes orientations of crystal growth, respectively. The PFM study revealed that the piezoelectric coefficient (d33) of the long grains was much larger than that of the circular grains.  相似文献   

18.
《Ceramics International》2022,48(5):6347-6355
BiFe1-2xZnxMnxO3 (BFZMO, with x = 0–0.05) thin films were synthesized via sol–gel method. Effects of (Zn, Mn) co-doping on the structure, ferroelectric, dielectric, and optical properties of BiFeO3 (BFO) films were investigated. BFZMO thin films exhibit rhombohedral structure. Scanning electron microscopy (SEM) images indicate that co-doping leads to a decrease in grain size and number of defects. Leakage current density (4.60 × 10?6 A/cm2) of BFZMO film with x = 0.02 was found to be two orders of magnitude lower than that of pristine BFO film. Owing to decreased leakage current density, saturated PE curves were obtained. Maximum double remnant polarization of 413.2 μC/cm2 was observed for BFZMO thin film with x = 0.02, while that for the BFO film was found to be 199.68 μC/cm2. The reason for improved ferroelectric properties is partial substitution of Fe ions with Zn and Mn ions, which resulted in a reduction in the effect of oxygen vacancy defects. In addition, co-doping was found to decrease optical bandgap of BFO film, opening several possible routes for novel applications of these (Zn, Mn) co-doped BFO thin films.  相似文献   

19.
《Ceramics International》2020,46(9):13219-13224
In this paper, the multiferroic BeFiO3 monolayer and NiTiO3–BiFeO3 bilayer thin films were fabricated by spin-coating method on the SrRuO3/n+-Si substrate. The structural and ferroelectric properties of multiferroic BeFiO3 monolayer and NiTiO3–BiFeO3 bilayer thin films were investigated. Both multiferroic films showed the typical XRD patterns of the perovskite structure without presence of the second phase. The electrical properties, such as leakage current and remnant polarization, of the NiTiO3–BiFeO3 bilayer film were superior to those of BeFiO3 monolayer film, which those values were 1.94 × 10−4 A/cm2 at electric field of 0.75 MV/cm and 14.05 μC/cm2, respectively. This outcome is due to the NiTiO3–BiFeO3 bilayer film with a high Schottky barrier height as well as a top NiTiO3 layer on the BiFeO3 film inducing the strain-induced polarization rotation and forming the strong domain-wall pinning.  相似文献   

20.
Magnetoelectric (ME) property modulation in heterostructured (Ni0.5Zn0.5)Fe2O4/Pt/Pb(Zr0.3Ti0.7)O3 (NZFO/Pt/PZT) thin films on platinized Si substrate by thermal annealing condition variation was studied. In an attempt to prevent interfacial reaction between NZFO and PZT layers during high temperature annealing, thin Pt layer was deposited which can serve as inter-diffusion barrier as well as electrode. The ferroelectric, magnetic, and ME properties of the heterostructured film were noticeably modulated due to microstructural evolution and clamping relaxation developed during thermal annealing process. Room temperature ME voltage coefficient of the heterostructured thin films was enhanced with increasing annealing temperature and reached to 29 mV/cm·Oe when annealed at 650 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号