首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Reaction sintered SiC ceramics were prepared by the silicon melt infiltration method over temperatures of 1450?1550°C. The effects of the carbon and silicon contents of the starting materials as well as the sintering temperature and time on the thermal conductivities and microstructures of the ceramic materials were studied. The thermal conductivities and microstructures of the samples were characterised using thermal conductivity measurements, X-ray diffraction analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy and mercury injection porosimetry. The results showed that sintering temperature and time as well as the carbon and silicon contents of the green specimens are the main factors affecting the microstructure and porosity of reaction bonded SiC ceramics. Increasing the reaction temperature and time decreased the porosity of the ceramics. This was due to the infiltration of the silicon melt into the ceramic specimens. The thermal conductivity and porosity of the sample sintered at 1550°C for 3 h in an argon atmosphere were 102·5 W m K?1 and 0·3% respectively.  相似文献   

2.
《Ceramics International》2023,49(4):6479-6486
Thermal protection has always been an important issue in the energy, environment and aerospace fields. Porous ceramics produced by the particle-stabilized foaming method have become a competitive material for thermal protection because of their low density and low thermal conductivity. However, the study of porous ceramics for composite systems using particle-stabilized foaming method was relatively rare. Here, silica-alumina composite porous ceramics were prepared by particle-stabilized foaming method, which was achieved by tailoring the surface charges of silica and alumina through adjustment of the pH. Porous ceramics exhibited porosity as high as 97.49% and thermal conductivity (25 °C) as low as 0.063 W m?1 K?1. The compressive strength of porous ceramics sintered at 1500 °C with a solid content of 30 wt% could reach 0.765 MPa. Based on the light weight and excellent thermal insulation properties, the composite porous ceramic could be used as a potential thermal insulation material in the spacecraft industry.  相似文献   

3.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

4.
The elastic constants and conductivity of partially sintered single-phase and two-phase ceramics (exemplified by alumina ceramics and alumina-zirconia composites, respectively) with different grain size ratio (from 1:1 to 1:4) are investigated by numerical modeling. The relative elastic moduli of partially sintered two-phase ceramics are shown to be relatively similar to those of single-phase ceramics, whereas the relative conductivity is significantly lower, because of the higher phase contrast. The more the grain size ratio deviates from unity, the higher is the initial packing fraction, and the lower are the relative elastic moduli and conductivity of the partially sintered ceramics. The porosity dependence of the Poisson ratio shows a decreasing trend which is only very weakly affected by the grain size ratio. Correlations between relative Young’s modulus and relative conductivity lie between upper and lower cross-property bounds. For single-phase materials the correlation lies below, for two-phase materials above, the Pabst-Gregorová cross-property relation.  相似文献   

5.
The electrical and thermal conductivities of bulk barium-added silicon oxycarbide (SiOC-Ba) ceramics are investigated. The SiOC-Ba ceramics exhibited improved electrical and thermal conductivities upon increasing the sintering temperature from 1450 °C to 1650 °C. Precipitation of graphitic carbon clusters observed by Raman spectroscopy and high-resolution transmission electron microscopy is attributed to the phase separation during the fabrication process. The increase in the electrical conductivity can be rationalized in terms of an increase in the density of the sp2 CC bonds within the carbon clusters. The increase in the thermal conductivity is mainly attributed to the formation of interconnected graphitic clusters in the SiOC matrix and SiC embedded in the clusters. The electrical and thermal conductivities of the SiOC-Ba ceramics sintered at 1650 °C are 14.0 Ω?1 cm?1 and 5.6 W/m K, respectively, at room temperature. The electrical conductivity of SiOC-Ba sintered at 1550 °C is 5.3 Ω?1 cm?1 and 7.0 Ω?1 cm?1 at 2 and 300 K, respectively.  相似文献   

6.
Dense alumina ceramics doped with 5 wt% 4CuO-TiO2-2Nb2O5 composite sintering aids were obtained at low sintering temperatures of 950∼975 °C. The ceramic sintered at optimal condition shows good microwave dielectric properties (εr = 12.7, Q × f = 7400 GHz), high thermal conductivity (18.4 W/m K) and high bending strength (320 MPa). TEM and EDS analysis revealed that amorphous Cu-Ti-Nb-O interfacial films with nanometer thickness formed at the grain boundaries, which could provide paths of mass transportation for densification. Al3+ ions may be involved in mass transportation through substitution by Ti3+ and Ti4+ ions near the grain boundary during the sintering process. The accumulation of copper ions at the trigeminal grain boundary was observed. The migration and reaction of copper ions in grain boundaries may also play an important role in promoting mass transportation and low-temperature densification of alumina ceramics.  相似文献   

7.
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics.  相似文献   

8.
The electrical conductivity of CaF2‐doped aluminum nitride (AlN) ceramics was characterized at high temperatures, up to 500°C, by AC impedance spectroscopy. High thermal conductive CaF2‐doped AlN ceramics were sintered with a second additive, Al2O3, added to control the electrical conductivity. The effects of calcium fluoride (CaF2) on microstructure and related electrical conductivity of AlN ceramics were examined. Investigation into the microstructure of specimens by TEM analysis showed that AlN ceramics sintered with only CaF2 additive have no secondary phases at grain boundaries. Addition of Al2O3 caused the formation of amorphous phases at grain boundaries. Addition of Al2O3 to CaF2‐doped AlN ceramics at temperatures 200°C–500°C revealed a variation in electrical resistivity that was four orders of magnitude larger than for the specimen without Al2O3. The amorphous phase at the grain boundary greatly increases the electrical resistivity of AlN ceramics without causing a significant deterioration of thermal conductivity.  相似文献   

9.
Measurement of the thermal diffusivity by the laser flash technique has been used to evaluate thermal conductivity values between 20°C and 900°C for tin oxide ceramics. By using MnO2 as a sintering additive, strong variation of the microstructure in terms of porosity and average grain size was achieved in the samples. For dense ceramics, larger average grain size yielded a significant increase in the room temperature thermal conductivity. This could be attributed to a reduction of the number of grain boundaries in the heat flow path. The grain boundary interfacial resistance was consequently estimated at 4.1×10−8 m2 KW−1. Data concerning the effects of additive amount, pore content, and temperature are also reported.  相似文献   

10.
The effect of sintering temperature on the mechanical and thermal properties of SiC ceramics sintered with Al2O3–Y2O3–CaO without applied pressure was investigated. SiC ceramics containing A2O3–Y2O3–CaO as sintering additives can be sintered to >97% theoretical density at temperatures between 1750°C and 1900°C without applied pressure. A toughened microstructure, consisting of relatively large elongated grains and relatively small equiaxed grains, has been obtained when sintered at temperatures as low as 1800°C for 2 h in an argon atmosphere without applied pressure. The achievement of toughened microstructures under such mild conditions is the result of the additive composition. The thermal conductivity of the SiC ceramics increased with increasing sintering temperature because of the decrease in the lattice oxygen content of the SiC grains. Typical sintered density, flexural strength, fracture toughness, hardness, and thermal conductivity of the 1850°C‐sintered SiC, which consisted of 62.2% 4H, 35.7% 6H, and 2.1% 3C, were 99.0%, 628 MPa, 5.3 MPa·m1/2, 29.1 GPa, and 80 W·(m·K)?1, respectively.  相似文献   

11.
The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10?9 Scm?1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10?6 Scm?1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10?5 Scm?1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.  相似文献   

12.
Polycrystalline SiC ceramics with 10 vol% Y2O3-AlN additives were sintered without any applied pressure at temperatures of 1900-2050°C in nitrogen. The electrical resistivity of the resulting SiC ceramics decreased from 6.5 × 101 to 1.9 × 10−2 Ω·cm as the sintering temperature increased from 1900 to 2050°C. The average grain size increased from 0.68 to 2.34 μm with increase in sintering temperature. A decrease in the electrical resistivity with increasing sintering temperature was attributed to the grain-growth-induced N-doping in the SiC grains, which is supported by the enhanced carrier density. The electrical conductivity of the SiC ceramic sintered at 2050°C was ~53 Ω−1·cm−1 at room temperature. This ceramic achieved the highest electrical conductivity among pressureless liquid-phase sintered SiC ceramics.  相似文献   

13.
Nb-doped Li7La3Zr2O12 (Nb-LLZO) is one of the promising electrolyte candidates in the Li-Garnet family due to its high Li-ion conductivity. The sintered Nb-LLZO ceramics, however, often exhibit abnormal grain growth with high porosity and poor mechanical properties. For advantaged electrochemical and mechanical properties, a uniform and dense microstructure is desired. In this research, MgO has been added as a secondary phase to inhibit abnormal grain growth in Nb-LLZO. The sintering process of the Nb-LLZO/MgO composite ceramics has been studied for different Nb doping levels (0.2–0.7 pfu) at sintering conditions of 1250?°C for 1–360?min. The ceramic density, microstructure, and Li-ion conductivity are reported. The composite ceramics have shown a very fast sintering speed. At 1250?°C, the 0.4Nb-LLZO/MgO composite can be well-sintered in 1?min. For sintering at 1250?°C for 40?min, ceramic samples showing relative density of 97%, conductivity of 6?×?10?4 S?cm?1 at 25?°C, and activation energy of 0.40?eV are obtained.  相似文献   

14.
Pure and Al-doped ZnO powders have been sintered by Spark Plasma Sintering. Al doping allows the ceramics to reach a relative density greater than 90% at a sintering temperature of 500?°C. The morphology of powder nanoparticles impacts the final grain size of the sintered bulk compounds. A ceramic sintered from isotropic nanoparticles of 30?nm in diameter can reach an average grain size of 110?nm, whereas a ceramic sintered from platelets and isotropic nanoparticles exhibits an average grain size in the submicrometric range. The influence of ceramic grain size on the thermal conductivity has been investigated. It shows that substantial decrease of the grain size from several microns down to 100?nm reduces the thermal conductivity from 29.5 to 7.8?W/m?K at 100?°C. The stability of nanostructured ceramic has also been checked. After SPS, an annealing at 500?°C in air also leads to grain growth.  相似文献   

15.
A new type of non-oxide sintering additive of YH2 was introduced for the fabrication of AlN ceramics with high thermal conductivity and flexural strength. The effects of YH2 addition (0–5 wt%) on the phase composition, densification, microstructure, thermal conductivity and flexural strength of pressureless sintered AlN ceramics were investigated and compared with those Y2O3-added samples (1–5 wt%). The addition of 1 wt% YH2 led to an in-situ reduction reaction with oxygen impurities, the formation of Y2O3 and finally the formation of yttrium aluminate, which in turn improved densification and microstructure. A high flexural strength (408.69 ± 28.23 MPa) was achieved. The addition of 3 wt% YH2 increased the average grain size and purified the lattice. All these effects are believed to help achieve a high thermal conductivity of 184.82 ± 1.75 W·m?1·K?1. Although the thermal conductivity was close to the value of 3 wt% Y2O3-added sample, its strength was much increased to 381.53 ± 43.41 MPa. Meanwhile, it demonstrated a good combination of the thermal conductivity and flexural strength than the values reported in some literature. However, further increasing the YH2 addition to 5 wt% resulted in a high N/O ratio that inhibited the densification behavior of AlN ceramics. The current study showed that AlN ceramics with excellent thermal and mechanical properties could be obtained by the introduction of a suitable YH2 additive.  相似文献   

16.
Aluminum borate porous ceramics are excellent candidates for high-temperature insulation applications. Current research on aluminum borate-based porous ceramics mainly focuses on porous ceramics made up of aluminum borate whiskers, whose low aspect ratio leads to a relatively dense porous structure; this results in porous ceramics with low porosity and relatively high thermal conductivity. In this study, we report the manufacturing of aluminum borate nanofibrous porous ceramics by an agar-based gel casting method using electrospun nanofibers with a high aspect ratio as the three-dimensional skeleton structure. We explored the effect of the alumina/boron oxide molar ratio on the microscopic morphology and crystal phase composition of the aluminum borate nanofibers and that of the sintering temperature on the micro and macro properties of porous ceramics based on the nanofibers. The results showed that aluminum borate nanofibers with an alumina/boron oxide molar ratio of 7:2 had the densest microscopic morphology, and the corresponding porous ceramics exhibited a higher porosity (91%) and lower thermal conductivity (0.11 W m?1 K?1) after sintering at 1200 °C than aluminum borate porous ceramics with aluminum borate whiskers as the skeleton. The successful synthesis of aluminum borate nanofibrous porous ceramics provides new insights into the development of high-temperature insulators.  相似文献   

17.
The effect of grain growth on the thermal conductivity of SiC ceramics sintered with 3 vol% equimolar Gd2O3-Y2O3 was investigated. During prolonged sintering at 2000 °C in an argon or nitrogen atmosphere, the β  α phase transformation, grain growth, and reduction in lattice oxygen content occurs in the ceramics. The effects of these parameters on the thermal conductivity of liquid-phase sintered SiC ceramics were investigated. The results suggest that (1) grain growth achieved by prolonged sintering at 2000 °C accompanies the decrease of lattice oxygen content and the occurrence of the β  α phase transformation; (2) the reduction of lattice oxygen content plays the most important role in enhancing the thermal conductivity; and (3) the thermal conductivity of the SiC ceramic was insensitive to the occurrence of the β  α phase transformation. The highest thermal conductivity obtained was 225 W(m K)−1 after 12 h sintering at 2000 °C under an applied pressure of 40 MPa in argon.  相似文献   

18.
In this work, porous ZrC-SiC ceramics with high porosity and low thermal conductivity were successfully prepared using zircon (ZrSiO4) and carbon black as material precursors via a facile one-step sintering approach combining in-situ carbothermal reduction reaction (at 1600 °C for 2 h) and partial hot-pressing sintering technique (at 1900 °C for 1 h). Carbon black not only served as a reducing agent, but also performed as a pore-foaming agent for synthesizing porous ZrC-SiC ceramics. The prepared porous ZrC-SiC ceramics with homogeneous microstructure (with grain size in the 50–1000 nm range and pore size in the 0.2–4 µm range) possessed high porosity of 61.37–70.78%, relatively high compressive strength of 1.31–7.48 MPa, and low room temperature thermal conductivity of 1.48–4.90 W·m?1K?1. The fabricated porous ZrC-SiC ceramics with higher strength and lower thermal conductivity can be used as a promising light-weight thermal insulation material.  相似文献   

19.
Aluminum nitride (AlN) ceramics with the concurrent addition of CaZrO3 and Y2O3 were sintered at 1450-1700 °C. The degree of densification, microstructure, flexural strength, and thermal conductivity of the resulting ceramics were evaluated with respect to their composition and sintering temperature. Specimens prepared using both additives could be sintered to almost full density at relatively low temperature (3 h at 1550 °C under nitrogen at ambient pressure); grain growth was suppressed by grain-boundary pinning, and high flexural strength over 630 MPa could be obtained. With two-step sintering process, the morphology of second phase was changed from interconnected structure to isolated structure; this two-step process limited grain growth and increased thermal conductivity. The highest thermal conductivity (156 Wm−1 K−1) was achieved by two-step sintering, and the ceramic showed moderate flexural strength (560 MPa).  相似文献   

20.
A porous alumina body was synthesized from anisotropic alumina particles, namely platelets. When green compacts, which had been uniaxially pressed at 1 MPa, were heated at 1200 and 1500 °C for 1 h, the average porosity of the resulting alumina bodies was 75.5 and 71.0%, respectively. The thermal conductivity of the porous alumina fabricated at 1400 °C for 1 h with 72.3% in porosity was 0.8 W m?1 K?1. In an attempt to increase the compressive strength of the porous alumina bodies, TEOS (tetraethyl orthosilicate) solution treatment was carried out, followed by reheating to 1400 °C for 1 h. The compressive strength of the porous alumina body increased from 3.8 MPa (without TEOS solution treatment) to 10.2 MPa (with three rounds of TEOS treatment), with the porosity decreasing to 65.5% and the thermal conductivity increasing to1.2 W m?1 K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号