首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

In this paper, design and simulation of a single-axial, capacitive, fully differential MEMS accelerometer based on surface micromachining with two proof masses is presented. So far, most surface micromachined capacitive accelerometers offered, employed differential interface circuits to measure capacitor variations. However, in the presented structure, the possibility of fully differential design is realized by dividing the proof mass to two electrically isolated parts that are located on a silicon nitride layer. By utilizing two proof masses and altering outputs and stimulation voltage, parasitic capacitor is reduced and the sensitivity is increased. Moreover, some sensor capacitors are embedded inside the proof mass, so that sensitivity could be increased in the limited area and electrode length could be reduced. Furthermore, analytic equations are derived to calculate the sensitivity, as well to optimize the sensor structure. The designed sensor has been simulated and optimized using COMSOL Multiphysics, where the simulation results show the mechanical and capacitive sensitivity of 29.8 nm/g and 15.8 fF/g, respectively. The sensor size is 1 mm × 1 mm that leads to excellent performance, regarding to the defined figure of merit.

  相似文献   

3.
A novel single-chip microelectromechanical systems (MEMS) capacitive microphone with a slotted diaphragm for sound sensing is developed to minimize the microphone size and improve the sensitivity by decreasing the mechanical stiffness of the diaphragm. The behaviors of the microphones with clamped and slotted diaphragms are analyzed using the finite element method (FEM). According to the results, a clamped microphone with a 2.43 × 2.43 mm2 diaphragm and a slotted one with a 1.5 × 1.5 mm2 diaphragm have the same mechanical sensitivity, but the size of slotted microphone is at least 1.62 times smaller than clamped structure. The results also yield a sensitivity of 5.33 × 10−6 pF/Pa for the clamped and 3.87 × 10−5 pF/Pa for the slotted microphone with a 0.5 × 0.5 mm2 diaphragm. The sensitivity of the slotted diaphragm is increased 7.27 times. The pull-in voltage of the clamped microphone is 105 V, and slotted one is 49 V. The pull-in voltage of the slotted microphone is about 53% decreased.  相似文献   

4.
Mukhiya  R.  Agarwal  P.  Badjatya  S.  Garg  M.  Gaikwad  P.  Sinha  S.  Singh  A. K.  Gopal  R. 《Microsystem Technologies》2019,25(9):3521-3532
Microsystem Technologies - The paper presents design, analytical modelling and system level simulations of a highly sensitive single-axis in-plane Micro-Electro-Mechanical-Systems (MEMS)...  相似文献   

5.
在传统Σ-Δ架构基础上,引入了低精度高速模/数转换器(ADC),将前置放大器输出的模拟电压信号转换为数字信号,有利于简化电容式微电子机械系统(MEMS)加速度计系统模拟接口电路设计.在嵌入ADC的MEMS加速度系统中,采用过采样平均数字算法对信号进行估计,有效降低系统对前置放大器噪声性能的需求,利于实现低功耗和高精度的设计目标.仿真结果表明:与未采用过采样平均技术相比,当前置放大器输出等效噪声大于1μV/Hz时,系统的信噪比(SNR)提高了约10dB.  相似文献   

6.
为了提高电容式MEMS加速度计测量精度,设计了一种应用于MEMS加速度计微弱信号读出电路。读出电路由T型阻容网络放大电路、模拟开关解调电路和四阶带通滤波电路组成,通过Multisim软件仿真分析各模块电路原理并确定影响读出电路的主要因素,进一步优化确定元器件最佳参数,最后制作出PCB电路板并开展实验测试,实验结果表明微弱信号检测准确率达90%以上,能很好满足电容式MEMS加速度计微弱信号检测要求,同时该读出电路具有尺寸小、易调节、易于ASIC集成等特点,在微机械仪表的微小电容检测中有较高的实用价值。  相似文献   

7.
Microsystem Technologies - In this paper, a novel micro electro mechanical systems (MEMS) capacitive microphone is designed and modeled using SOI technology. We present static linear spring...  相似文献   

8.
The MEMS capacitive switch based on fixed-fixed microbeam has garnered significant attention due to their geometric simplicity and broad applicability. The accurate model which describes the multiphysical coupled-field of MEMS capacitive switch should be developed to predict their electromechanical behaviors. The improved macromodel of the fixed-fixed microbeam-based MEMS capacitive switch is presented to investigate the behavior of electrically actuated MEMS capacitive switch in this paper, the macromodel provides an effective and accurate design tool for this class of MEMS devices because of taking account into some effects simultaneously including fringing field effect, midplane stretching effect, residual stress and multiphysical coupled-field effect. The numerical analysis of mechanical characterizations of electrically actuated microbeam-based MEMS capacitive switch are performed by the finite element Newmark method, and the performances of static and dynamic of MEMS capacitive switch are obtained. The numerical results show that, with only a few nodes used in the computation, the FEM-Newmark gives the identical results to other numerical methods, such as the shooting method and experiments. Moreover, the proposed model can offer proper and convenient approach for numerical calculations, and promote design of MEMS devices.  相似文献   

9.
In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of the method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and the diaphragm to escape and thus reducing acoustical damping in the microphone. Spin-on-glass (SOG) was used as a sacrificial and isolating layer. Backplate is monocrystalline silicon wafer, that it is more stiff. This work will focus on design, simulation, fabrication and characterization of the microphone. The structure has a diaphragm thickness of 3 μm, a diaphragm size of 0.5 mm × 0.5 mm, and an air gap of 1.0 μm. The results show that the pull-in voltage is 105 V, the initial stress of evaporated aluminum diaphragm is around 1500 MPa and the zero bias capacitance of microphone is 2.12 pF. Comparing with the previous works, this microphone has several advantages: the holes have been made on diaphragm, therefore no need of KOH etching to make back chamber, in this way the chip size of each microphone is reduced. The fabrication process uses minimal number of layers and masks to reduce the fabrication cost.  相似文献   

10.
This paper presents a symmetrical double-sided serpentine beam-mass structure design with a convenient and precise process of manufacturing MEMS accelerometers. The symmetrical double-sided serpentine beam-mass structure is fabricated from a single double-device-layer SOI wafer, which has identical buried oxides and device layers on both sides of a thick handle layer. The fabrication process produced proof mass with though wafer thickness (860 μm) to enable formation of a larger proof mass. Two layers of single crystal silicon serpentine beams with highly controllable dimension suspend the proof mass from both sides. A sandwich differential capacitive accelerometer based on symmetrical double-sided serpentine beams-mass structure is fabricated by three layer silicon/silicon wafer direct bonding. The resonance frequency of the accelerometer is measured in open loop system by a network analyzer. The quality factor and the resonant frequency are 14 and 724 Hz, respectively. The differential capacitance sensitivity of the fabricated accelerometer is 15 pF/g. The sensitivity of the device with close loop interface circuit is 2 V/g, and the nonlinearity is 0.6 % over the range of 0–1 g. The measured input referred noise floor of accelerometer with interface circuit is 2 μg/√Hz (0–250 Hz).  相似文献   

11.
在高精度MEMS扭摆式加速度计电容检测和光电检测实现原理的基础上,分析了该加速度计热机械噪声和电学噪声特性.该加速度计结构在品质因数Q=1和Q=85时,热机械噪声分别为2.4μgn/根号Hz和0.28 μgn/根号Hz.对于电学噪声,电容检测的电学噪声为3.27 μgn/根号Hz,光电检测在只考虑电学噪声时能分辨的最小加速度可达0.05 μgn.对比得出对于扭摆式加速度计结构,光电检测具有比电容检测更小的系统总噪声.  相似文献   

12.
Microsystem Technologies - RF-MEMS switches may be divided into capacitive and metal-to-metal types in terms of type of connection. In capacitive switches in the OFF-state the beam does not attach...  相似文献   

13.
An interpretation of the thermal drift of the bulk silicon MEMS capacitive accelerometer using multiphysics analysis is proposed in this paper. Stress, strain, electrostatics, thermal and structural interactions are simulated based on the finite element method. The thermal drift is generated by both the stiffness asymmetry of the U-springs of the structure and relative displacement caused by the mismatch in thermal expansion coefficients between the Pyrex glass substrate and heavily boron-doped silicon structure, neither of which is dispensable. Although the layout design is symmetrical, the asymmetric widths of the U-springs, which cause stiffness asymmetry, are observed by scanning electron microscopy. To achieve a fast and feasible simulation, we divide the model into two components with different configurations. During the simulation, boundary conditions are carefully set up according to the fabrication process. A series of experiments is designed to verify the result, including a temperature experiment from −40 to 100 °C and DC voltage polarity experiment. To verify the conclusion, a new layout design that gradually increases the width of the U-springs without changing any other dimension is simulated, fabricated, and tested. The simulation and experiment results are compared and discussed.  相似文献   

14.
为降低环境温度对加速度计测量输出的影响,本文提出了一种新的加速度计温度补偿方法,即三维拟合曲面和计算的补偿方法。本文详细介绍了该温度补偿方法的具体原理和实现方法,并用实验进行了验证,实验结果表明加速度计最大零位漂移由温度补偿前的500 mV缩小为温度补偿后的50 mV,即温漂缩小了一个数量级,补偿效果明显。  相似文献   

15.
非线性是Sigma-Delta(ΣΔ)加速度计系统的关键指标之一。基于一个五阶ΣΔ加速度计结构,分析了其主要的非线性模块,在MATLAB中建立了整体结构的行为级模型,并利用根轨迹法进行了稳定性分析。基于TSMC 0.35μm工艺实现了一位量化的开关电容接口电路设计和版图设计,版图的后仿真结果和模型的行为级仿真结果一致,验证了所建立模型和设计电路的准确性。  相似文献   

16.
17.
加速度传感器材料的特性对传感器的性能影响很大,SiC作为新一代半导体材料具有优良的力学温度特性,适用于高温、高过载加速度传感器.基于SiC提出了一种可用于高温、高过载环境的加速度传感器设计方案.根据悬臂梁的相关力学理论知识,对传感器结构、尺寸进行了设计,并利用ANSYS有限元仿真软件对SiC材料传感器敏感结构进行模态分析、静力学分析、热分析.仿真结果表明,6H-SiC材料表现出了比Si材料更优异的抗高温、抗过载特性,为应用于高量程、高温环境下的加速度传感器研究提供了可靠的理论基础.  相似文献   

18.
Microsystem Technologies - This paper presents a new RF MEMS capacitive shunt switch with low voltage, low loss and high isolation for K-band applications. In this design, we have proposed the step...  相似文献   

19.
This paper presents the development of a MEMS based capacitive tactile sensor intended to be incorporated into a tactile array as the core element of a biomimetic fingerpad. The use of standard microfabrication technologies in realising the device allowed a cost efficient fabrication involving only a few process steps. A low noise readout electronics system was developed for measuring the sensor response. The performance of both bare and packaged sensors was evaluated by direct probing of individual capacitive sensor units and characterising their response to load–unload indentation cycles.  相似文献   

20.
基于MEMS技术的微电容式加速度传感器的设计   总被引:2,自引:0,他引:2  
给出了一种基于MEMS技术制作的微电容式加速度传感器的结构及工艺。为了准确地把握这种微电容式加速度传感器的力学和电学特性,仔细地建立了它的力学模型。在此基础上,详细分析了它的动态特性———模态。并用有限元的方法分析和计算了微电容式加速度传感器的加速度与电容信号的非线性输入输出关系,并结合实测参数验证了模型的有效性。最后提出了一种详细的有效的基于MEMS技术的微电容式加速度传感器的结构以及加工工艺流程。基于MEMS技术制作的微电容式加速度传感器具有结构简单、工作可靠和工作范围大的特点。根据这套方法,可以比较方便地设计并加工不同测量要求的加速度计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号