首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
稳定多晶氧化铝纤维质量之研究   总被引:1,自引:0,他引:1  
通过改变胶体添加剂和热处理参数,提高纤维化器的转速,达到了稳定胶体粘度、改善成纤性能、降低纤维直径、稳定并提高氧化铝纤维质量、降低生产成本之目的。  相似文献   

2.
The polymer-derived SiC fibers have broad application prospects in the fields of aerospace, nuclear industry and high-tech weapon. Oxygen plays an essential role in adjusting the composition, structure and tensile strength of SiC fibers. Our studies have found that introducing too much oxygen during air curing process will form the skin-core structure in nearly stoichiometric polycrystalline SiC fibers. In order to reveal the formation mechanism of the skin-core structure, gradient oxygen was introduced into the fibers. The morphologies, phase distributions and defects of the fibers were well characterized. By strictly controlling the introduction of oxygen, the polycrystalline product fiber exhibits intragranular fracture behavior and excellent high-temperature resistance. The retention rate of its tensile strength can reach up to 91% and 61% after exposure at 1800 °C for 1 h and 10 h, respectively. The present results give valuable insights into the structural optimization of the nearly stoichiometric polycrystalline SiC fibers.  相似文献   

3.
《Ceramics International》2016,42(10):12239-12245
In this paper, unidirectional SiC fiber (SiCf) reinforced geopolymer composites (SiCf/geopolymer) were prepared and effects of fiber contents on the microstructure and mechanical properties of the composites in different directions were investigated. The XRD results showed that addition of SiCf retarded geopolymerization process of geopolymer matrix by weakening the typical amorphous hump. SiCf in all the composites were well infiltrated by geopolymer matrix, but microcracks which were perpendicular to the fiber axial direction were noted in the interface area due to the thermal shrinkage of matrix during the curing process. With the increases in fiber contents, although Young's modulus of the composites increased continuously, flexural strength, fracture toughness and work of fracture increased at first, reached their peak values and then decreased. And when fiber content was 20 vol%, the composites showed the highest flexural strength, fracture toughness and work of fracture, which were 14.2, 15.2 and 81.6 times as high as those of pristine geopolymer, respectively, indicating significant strengthening and toughening effects from SiCf. Meanwhile, SiCf/geopolymer composites failed in different failure modes in the different directions, i.e., tensile failure mode in the x direction (in-plane and perpendicular to the fiber axial direction) and shear failure mode in the z direction (laminate lay-up direction).  相似文献   

4.
Thermostatic pyrolysis process of cured polycarbosilane fiber   总被引:4,自引:0,他引:4  
As precursor fiber of advanced SiC fiber, cured polycarbosilane (PCS) fiber is prepared, and thermostatic pyrolysis of this fiber is studied in detail. Since the weight change is the most important characteristic of the pyrolysis degree of cured PCS fiber, a precise balance is applied on-line to follow the weight change of the cured PCS fiber, which was carried out in a standing style furnace. In thermostatic pyrolysis, the degree of pyrolysis, which is characterized by the weight loss of the fiber, and the properties of the final SiC fibers were found to be strongly dependent on the process conditions such as N2 flow and the amount of fibers. From much evidence, it is the offgas evacuated in the process that plays an important role by accelerating pyrolysis and increasing pyrolysis degree.  相似文献   

5.
In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture.  相似文献   

6.
《Ceramics International》2022,48(9):12342-12349
Polycrystalline SiC (3C-, 6H-, 24R- and 27H-) nanostructures are synthesized via a modified molten salt shielded synthesis method (m-MS3) in open air using Si and carbon black as the starting materials. The influences of salt species and their amount, and the sintering temperature, are discussed and optimized. Well crystalline SiC nanopowders composed of bountiful microstructures (nanoparticles, nanowires, nanosheets and nanoblocks) are successfully synthesized by m-MS3 at 1250 °C, with KCl and NaCl as the shielding salt. The polycrystalline SiC powders showed excellent photoluminescence property at an excitation wavelength of 330 nm and relatively small band gaps of 2.57–2.74 eV, which are quite attractive among reports for SiC-based materials. The investigation in this paper may provide a prototype strategy for protection-free synthesis of nanostructured SiC powders applicable for ultraviolet luminescence devices.  相似文献   

7.
Michel Vincent  T. Giroud  C. Eberhardt 《Polymer》2005,46(17):6719-6725
As mechanical properties of short fiber reinforced thermoplastic injected components depend on flow induced fiber orientation, there is considerable interest in validating and improving models which link the flow field and fiber orientations to mechanical properties. The present paper concerns firstly the observation and quantification of fiber orientation in a rectangular plaque with adjustable thickness and molded with 30 and 50 wt% short fiber reinforced polyarylamide. An automated 2D optical technique has been used to determine fiber orientations. A classical skin (with orientation parallel to the flow)-core (with orientation perpendicular) structure is observed for thick plaques (thickness greater than 3 mm) but the core region is fragmentary for thickness less than 1.7 mm. It is shown that the gate design and different levels of fiber interactions, due to different fiber concentrations, are responsible for these observations. Secondly, computer simulations of flow and fiber orientation are shown. The agreement with the actual data is good, except in the case of the core for thin plaques. The limitations that have to be resolved come not only from the standard fiber orientation equations, but also from the flow kinematics computation.  相似文献   

8.
Fiber reinforced shotcrete (FRS) is commonly used in slope protection, tunnel linings as well as structural repair and rehabilitation. For the design of shotcrete mixes, it is of interest to see if data on fiber reinforced concrete (FRC) can be employed as an initial guideline. In this study, various properties of FRS, including its compressive strength, flexural behavior, permeability and shrinkage behavior, are compared with FRC of similar composition. The results, based on five different mixes, indicate that the fabrication process (i.e., shotcreting vs. casting) can significantly affect compressive strength and permeability, but has relatively little effect on shrinkage behavior. The flexural strength of FRS is slightly higher than that for FRC in most cases, but the residual load carrying capacity in the postcracking regime can be significantly lower. Based on the differences in the properties of FRC and shotcrete, implications to material design are discussed.  相似文献   

9.
Youngjae Yoo 《Polymer》2011,52(1):180-190
Nylon 6 composites containing both an organoclay and glass fibers as fillers were prepared by melt processing. The aspect ratios of the glass fibers and the clay platelets were determined by electron microscopy techniques. The aspect ratio of each type of filler decreased as filler loading increased. A two particle population model for the tensile modulus was constructed based on the Mori-Tanaka composite theory. The experimental levels of reinforcement appear to be reasonably consistent with model predictions when changes in particle aspect ratios are accounted for. The tensile strength increases and elongation at break decreases as the content of either filler increases according to expected trends. Izod impact strength increased with glass fiber content but decreased with clay content.  相似文献   

10.
先驱体转化法制备碳化硅纤维   总被引:5,自引:0,他引:5  
简述了碳化硅纤维的发展简史 ;指出了优良的先驱体的特点和合成方法 ;为获得优异的高温性能的碳化硅纤维 ,应使先驱体聚合物中的n(C) /n(Si)比尽量接近 1 ,或引入金属元素或烧结助剂 ;介绍了影响碳化硅纤维力学性能的若干因素和目前已商品化的几种碳化硅陶瓷纤维的典型性质。  相似文献   

11.
采用溶胶-凝胶法制备80多晶氧化铝纤维。以结晶氯化铝、铝粉和硅溶胶为主要原料制备出黏度分别为8、14、20、26和32Pa.s的甩丝胶体;采用甩丝法进行纤维化试验,控制甩丝盘转速分别为4000、5000、6000、7000和8000r.min-1;热风温度分别为60、70、80、90和100℃;并将甩丝后的纤维坯体于1250℃烧成,检测其平均直径和平均单丝拉伸强度。结果表明:在胶体黏度为20Pa.s、甩丝盘转速为6000r.min-1、热风温度为80℃时,纤维的平均直径为3.8μm,平均单丝拉伸强度超过1000MPa,是一种性能较优异的氧化铝纤维。  相似文献   

12.
Polyrotaxane fiber and polyrotaxane/cellulose blend fibers were prepared by wet-spinning of the polyrotaxane or polyrotaxane/cellulose blend solution dissolved in the new solvent system, i.e. dimethylacetamide/lithium chloride (DMAc/LiCl), into methanol and a subsequent annealing. In the resultant polyrotaxane/cellulose fiber, some undissolved rodlike cellulose microcrystals were oriented along with the fiber axis, resulting in formation of nanocomposite-like structure. From tensile measurements, it was found that the Young's modulus and tensile strength of the fibers with polyrotaxane/cellulose ratio of 1:1 and 2:1 were higher than those of the pure cellulose fiber. Although the mechanical properties of the fiber with polyrotaxane/cellulose ratio of 4:1 and the pure polyrotaxane fiber were lower than those of the pure cellulose fiber, these fibers showed significantly large strain at break (up to 90% strain), presumably due to the sliding of the cyclodextrin rings of the polyrotaxane in the fibers.  相似文献   

13.
An immiscible thermoplastic component was added to a conventional short fiber reinforced polymer to study its effect on the mechanical properties of the composite. Because of the preferential wetting of the fiber reinforcement a continuous network was formed of fibers ‘welded’ together by the minor component within the matrix polymer.Polyethylene (PE) was used as the matrix, polyamide-6 (PA6) as dispersed polymer phase and glass fibers (GF) as reinforcement. The obtained composite retained unusually high values of the elasticity modulus at temperatures above the melting point of the matrix. The upper limit of the ‘applicability’ of the material is determined by the melting point of the minor component. A simple model was derived to describe the mechanical properties of the composite. The model shows a good agreement with the experimental data. The influence of the model parameters on the predictions of the model was examined.  相似文献   

14.
Short ZrO2 fibers (ZrO2(f)) reinforced NiFe2O4 ceramic composites were fabricated by cold pressing process. The phase composition, microstructure, mechanical properties and fiber/matrix interface of the composites were investigated by X-ray diffraction, scanning electron microscopy and mechanical testing machines. ZrO2(f) show good thermodynamic and chemical compatibility with NiFe2O4 ceramic matrix and effectively enhanced the mechanical properties. The toughening mechanisms are fiber bridging, interfacial debonding, fiber pullout, phase transformation and the matrix constraint effect. By incorporation of 3 wt% fibers with the average length of 5~6 mm, the bending strength and fracture toughness of the composites reached 88.92 MPa and 4.62 MPa m1/2, respectively, while the strength conservation ratio after thermal shock increased from 48.85% to 75.86%. The weak interface bonding built up between ZrO2(f) and NiFe2O4 facilitates the reinforcing effects of the fibers to operate.  相似文献   

15.
《Ceramics International》2016,42(4):5345-5352
In this paper, short SiC fiber (SiCsf) reinforced geopolymer composites (SiCsf/geopolymer) were prepared and effects of fiber contents and lengths on the microstructure and mechanical properties of the composites were investigated. In-situ crack growth was carried out to study the fracture behavior and toughening mechanism of the composites. The results showed that SiCsf/geopolymer composite developed weak interfacial bonding state through mechanical interlocking rather than chemical interfacial reaction. The presence of SiCsf not only enhanced both flexural strength and work of fracture, but also prevented the catastrophic failure as seen in neat geopolymer. When fiber content was 2.0 vol% with length of 5 mm, the composite obtained the highest flexural strength and work of fracture, which were 5.6 and 63 times as high as those of neat geopolymer, respectively. In-situ crack growth together with fractographs showed that toughening mechanisms of the composite included formation and propagation of microcracks, crack deflection, fiber debonding and significant pulling-out.  相似文献   

16.
The response of three different SiC-ZrB2 ceramics obtained by hot-pressing was studied at typical conditions of thermal protection systems of a re-entry spacecraft. Button-like lab-scale demonstrators were manufactured and tested in high enthalpy dissociated supersonic airflows using an arc-jet ground facility. Under severe aero-heating of up to 21 MJ/kg of specific total enthalpy and 3.5 MW/m2 of (cold-wall) heat flux the SiC-ZrB2 UHTC buttons endured rather well, though thermo-chemical surface instabilities started taking place for side wall surface temperatures of some buttons above 2050 K. The experimental determinations of the surface temperature, correlated to the microstructure changes occurred during testing, allowed to interpret the observed phenomena. Potentials and limits of the oxidation-resistant SiC-ZrB2 system to withstand such extreme conditions were outlined.  相似文献   

17.
碳纤维增强碳化硅基复合材料的研究   总被引:1,自引:0,他引:1  
碳纤维增强碳化硅基复合材料(Cf/SiC)具有良好的力学性能,作为特殊结构的功能材料,是航空航天领域和新能源领域的研究热点之一。本文主要阐述了增强相碳纤维的发展,复合材料的基体复合技术,以及复合材料界面相的研究,并展望了碳纤维复合材料在高新技术领域中的应用与发展前景。  相似文献   

18.
Dense polycrystalline cBN (PcBN)–SiCw composites were fabricated by a two-step method: First, SiO2 was coated on the surface of cubic boron nitride (cBN) particles by the sol-gel method. Then, silicon carbide whisker (SiCw)- coated cBN powder was prepared by carbon thermal reaction between SiO2 and carbon powders at 1500°C for 2 hour. Then, cBN–SiCw complex powders were sintered by high-pressure and high-temperature sintering technology using Al, B, and C as sintering additives. The phase compositions and microstructures of cBN–SiCw composites were investigated by X-ray diffraction and scanning electron microscopy, respectively. It was found that the SiCw and Al3BC3 had been fabricated by in situ reaction, which cannot only promote densification but also improve mechanical properties. The relative density of PcBN composites increased from 96.3% to 99.4% with increasing SiCw contents from 5 to 20 wt%. Meanwhile, the Vickers hardness, fracture toughness and flexural strength of as-obtained composites exhibited a similar trend as that of relative density. The composite contained 20 wt% of SiCw exhibited the highest Vickers hardness and fracture toughness of 42.7 ± 1.9 GPa and 6.52 ± 0.21 MPa•m1/2, respectively. At the same time, the flexural strength reached 406 ± 21 MPa.  相似文献   

19.
Non-oxide ceramic matrix composites (CMC) based on SiC fibers with SiC matrix were fabricated by polymer infiltration and pyrolysis (PIP) and characterized regarding their microstructural features and their mechanical properties. The fiber preform was made using winding technology. During the winding process, the SiC fiber roving was impregnated by a slurry containing SiC powder and sintering additives (Y2O3, Al2O3 and SiO2). This already helped to achieve a partial matrix formation during the preform fabrication. In this way, the number of PIP cycles to achieve composites with less than 10% open porosity could be reduced significantly. Additionally, damage-tolerant properties of the composites were obtained by an optimal design of the matrix properties although only uncoated fibers were used. Finally, composites with a strength level of about 500 MPa and a damage-tolerant fracture behavior with about 0.4% strain to failure were obtained.  相似文献   

20.
Different failure behaviors were observed in the 2D C/SiC torque tubes which were fabricated by chemical vapor infiltration (CVI) with different fiber orientations (0°/90° and ±45°). CT test was implemented to characterize the density heterogeneity of the ceramic matrix composite (CMC) torque tubes. With the density value measured by Archimedes drainage method, FEM software was implemented to simulate the stress distribution of the ceramic matrix composite torque tubes and calculate the failure stress. Torsional tests were conducted using special attachments to a universal material test machine. Different torsional behaviors of CMC torque tubes with two different fiber orientations were presented in the stress-strain curves. The fracture morphologies were observed by SEM, and the predominant factors of failure were analyzed. CMC torque tubes with fiber orientation of ±45° have a higher torque capacity and modulus. In failure analysis, we found that ±45° fiber orientation CMC torque tubes have reasonable fracture morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号