首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Recently, high-entropy carbides have attracted great attention due to their remarkable component complexity and excellent properties. However, the high melting points and low self-diffusion coefficients of carbides lead to the difficulties in forming solid solution and sintering densification. In this work, six dense multicomponent carbides (containing 5–8 cations) were prepared by a novel ultrafast high-temperature sintering (UHS) technique within a full period of 6 min, and three of them formed a single-phase high-entropy solid solution. The solid solubility of the UHSed multicomponent carbides was highly sensitive to the compositional variation. The presence of Cr3C2 liquid had significant contributions to the formation of solid solution and the densification of multicomponent carbides. All UHSed multicomponent carbides exhibited high hardness, which, unexpectedly, did not simply increase with increasing number of the components. The highest nanohardness with a value of 36.6 ± 1.5 GPa was achieved in the (Ti1/5Cr1/5Nb1/5Ta1/5V1/5)Cx high-entropy carbide. This work is expected to expedite the development of high-entropy carbides and broaden the application of UHS in the synthesis and densification of advanced ceramics.  相似文献   

2.
Alumina platelets were arranged horizontally in submicron alumina particles by shear force in the flow of slurries during casting. The obtained alumina green bodies with platelets were pressureless-sintered in vacuum, producing ceramics with thoroughly oriented grains and high transmittance. The effects of sintering parameters on the densification, microstructure evolution, and orientation degree of alumina ceramics were investigated and discussed. The results showed that the densification, grain size, orientation degree, and in-line transmittance were increased with increasing sintering temperature. The enhancement of orientation degree was mainly coherent with grain growth. The grain-oriented samples exhibited a much higher in-line transmittance (at 600 nm) of 61 % than that of the grain random sample (29 %). Moreover, the transmission remained a high level in the ultraviolet range (<300 nm).  相似文献   

3.
The effect of second phase addition of zirconia on the mechanical response of textured alumina was analysed. Highly textured monolithic tape-casted alumina was obtained through templated grain growth. Compositions containing 1, 2, 5 and 10 vol% of (i) non-stabilised and (ii) 3 mol% yttria-stabilised zirconia, respectively, were investigated. XRD analyses revealed that the texture degree decreased with increasing second phase content. Microstructural analysis showed zirconia grains inside the textured alumina grains for contents ≤ 5 vol%, affecting the mode of fracture. Fracture toughness of textured alumina significantly decreased with the addition of a second phase. In the case of non-stabilised zirconia, the constraint of the alumina matrix and the small grain size led to a lower fracture toughness in comparison to monolithic textured alumina (KIc = 5.1 MPa m1/2). The fracture toughness of textured alumina with 3 mol% yttria-stabilised zirconia was comparable to equiaxed alumina, independent of the content ratio (KIc = 3.5 MPa m1/2).  相似文献   

4.
(La,Sr)MnO3 (LSMO) nanolayers with various crystallographic textures were grown on the sapphire substrate with and without In2O3 epitaxial buffering. The LSMO nanolayer with In2O3 epitaxial buffering has a (110) preferred orientation. However, the nanolayer without buffering shows a highly (100)-oriented texture. Detailed microstructure analyses show that the LSMO nanolayer with In2O3 epitaxial buffering has a high degree of nanoscale disordered regions (such as subgrain boundaries and incoherent heterointerfaces) in the film. These structural inhomogeneities caused a low degree of ferromagnetic ordering in LSMO with In2O3 epitaxial buffering, which leads to a lower saturation magnetization value and Curie temperature, and higher coercivity and resistivity.  相似文献   

5.
Ultra‐fine 1 mol% CeO2‐10 mol% Sc2O3 co‐doped and stabilized ZrO2 (1Ce10ScSZ) powders with average grain size less than 10 nm in diameter were prepared by hydro/solve‐thermal method using either deionized water, ethanol, or methanol as solvent. As‐synthesized powders were characterized in terms of phase structure, particle morphology, and chemical composition by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), high‐resolution transmission electron microscopy (HRTEM), and inductively coupled plasma‐optical emission spectroscopy (ICP‐OES), respectively. Sintering studying was conducted on pellets of 15 mm in diameter and 3 mm in thickness under uniaxial compaction using 25 MPa at either 600, 800, 1000, 1100, 1200, 1400, or 1500°C for 1 hour. Phase transitions and grain morphologies of those sintered samples were characterized by XRD and field emission scanning electron microscopy (FESEM). Mechanical properties were characterized on dense pellets sintered at 1500°C by nanoindentation. Experimental results showed that ethanol was more effective to synthesize agglomerate‐free 1Ce10ScSZ powders as compared with deionized water and methanol. Choice of solvent affected the environment of hydro/solve‐thermal solution, which led to variation of chemical compositions of powders and porosities of sintered pellets, and therefore, influenced their mechanical performance. Our study showed that solvent was important to make dense, thin, and mechanically robust 1Ce10ScSZ electrolyte for potential applications in electrochemical devices. Absolute values of hardness (H) and Young's modulus (E) measured from our samples are much higher and more consistence than those results obtained from commercial vendors reported in literatures.  相似文献   

6.
    
Nanoparticles usually exhibit a specific structure and composition, which can influence the development of the microstructure during their sintering. Barium hexaferrite nanoplatelets have a specific, iron-rich structure defined by the termination at the surfaces with the S blocks of their SRS*R* hexaferrite structure (S and R represent a cubic (Fe6O8)2+ and a hexagonal (BaFe6O11)2− structural block, respectively). The unsubstituted and Sc-substituted hexaferrite nanoplatelets were hydrothermally synthesized and fired at different temperatures. A combination of morpho-structural analyses (XRD, SEM, TEM, and aberration-corrected STEM) and magnetic measurements was used to reveal the evolution of the microstructure during sintering. During the initial stages of sintering the nanoplatelets thicken predominantly by the fusion of individual original nanoplatelets. Due to the Fe-rich surfaces of the nanoplatelets, the fusion growth results in an inhomogeneity that leads to the formation of planar defects in the grains and the precipitation of Fe2O3 as the secondary phase. In the Sc-substituted hexaferrite grains, superstructural compositional ordering was detected for the first time. The Sc substitution caused exaggerated grain growth in barium hexaferrite ceramics sintered at 1300 °C.  相似文献   

7.
This paper discusses the image-analyzer-based grain-size distributions (GSDs) of fully densified ceramics obtained from pressure casting a high-purity alumina powder, develops an algorithm for predicting the GSDs as a function of sintering time and temperature, and compares of the GSDs thus predicted with those experimentally observed. The GSD data for all sintered specimens, when nondimensionalized in terms of the median grain size, reduced to a single self-preserving GSD curve. The median grain was predicted as a function of sintering time and temperature using the classical kinetics equation. The GSDs predicted using the algorithm developed tallied well with those that were experimentally obtained.  相似文献   

8.
Porous barium titanate has gained significant attention in recent years for their potential use in applications such as scaffolds for bone tissue engineering, stress sensors, gas sensors, and many others. However, there is very little control over the grain size of the material during the sintering processes specially to achieve little or no growth of the starting powders. Here, using the two‐step sintering method barium titanate foams were shown to be synthesized with controlled grain size of the struts without significant differences in the pore structure of the materials. In order to evaluate the applicability of two‐step sintering for a variety of processing methods, highly porous (>80% porosity) foams synthesized through the direct polyurethane foaming method were used to create conditions furthest from bulk where two‐step sintering has shown success. Two‐step sintering parameters were identified and the processing conditions were confirmed to not alter the mechanical properties of the samples due to expected residual stresses or thermal shock resulting from the rapid heating and cooling rates employed.  相似文献   

9.
    
An entropy-stabilized rare earth hafnate (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 (5RH) with defective fluorite structure was successfully prepared by the emerging ultrafast high-temperature sintering (UHS) in less than six minutes. The 5RH ceramic possessed a higher thermal expansion coefficient (11.23 ×10?6/K, 1500 °C) and extremely low thermal conductivity (0.94 W/(m·k), 1300 ℃) owing to the larger lattice distortion of high-entropy materials. After high-temperature annealing at 1500 ℃, the 5RH showed extremely sluggish grain growth characteristics and excellent high-temperature phase stability, mainly attributed to the non-equilibrium sintering characteristic of the UHS and the sluggish diffusion effect of high-entropy materials. Therefore, (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 has excellent potential as a next-generation thermal barrier coating material to replace traditional Y2O3 stabilized ZrO2. Finally, using the UHS to prepare high-entropy ceramics provides a new technique for fast-sintering and developing next-generation thermal barrier coating materials.  相似文献   

10.
Ceramic materials are ubiquitous in technologies operating under high mechanical, thermal or chemical constrains. Research in ceramic processing aims at creating ceramics with properties that are still challenging to obtain, such as toughness, transparency, conductivity, among others. Magnetic slip casting is a process where an external magnetic field is used to createcontrolled texture in ceramics. Over the past 20 years of research on magnetic slip casting, dense and textured ceramics of multiple chemistry were found to exhibit enhanced properties. This paper reviews the progress in the field of magnetic slip casting, details the processing parameters and the textures obtained for a diverse range of compositions. The structural and functional properties of the magnetically textured slip casted and sintered ceramics are presented. This overview of the magnetic slip casting process allows to identify critical directions for future advancement in advanced technical ceramics.  相似文献   

11.
In this work we demonstrate that fine Ti3SiC2 powders can be tape-cast and/or cold-pressed and pressureless-sintered in Ar- or Si-rich atmospheres to produce fully dense, oriented microstructures in which the basal planes are parallel to the surfaces. Carbon- and/or Si-rich environments suppress grain growth. In the case of the tape casting, the C-residue from binder burnout results in small core grains relative to the surface grains that can grow significantly. When sintering in high Si activities, titanium silicide phases form at the grain boundaries that slow grain growth. Annealing the latter in Ar at 1600°C, for extended periods (30 h), rids the samples of these grain-boundary phases, which in turn results in grain growth. The advantage of the latter process is that the final grain size distribution is more uniform from surface to bulk.  相似文献   

12.
    
Nanocrystalline magnesium–copper–zinc (Mg0.30Cu0.20Zn0.50Fe2O4) ferrites were prepared by microwave sintering technique. The effects of the sintering temperature on particle size and magnetic properties were investigated. In this article, optimum sintering temperature required for MgCuZn ferrite system for obtaining good electromagnetic properties, suitable for applications in low temperature co-fired ceramics (LTCC) chip components was studied. The grain size, initial permeability, dielectric constant and saturation magnetisations were found to increase, and dielectric loss was found to decrease with the increasing sintering temperature. Mg–Cu–Zn ferrites with a permeability of μ?=?1110 (at 1?MHz) were fully densified at the standard LTCC sintering temperature of 950°C.  相似文献   

13.
Recently developed Bi0.5Na0.5TiO3(BNT)-based piezoceramics face two urgent obstacles: high driving field required to trigger large strain and poor temperature stability. Highly oriented (1-x)(0.83Bi0.5Na0.5TiO3-0.17Bi0.5K0.5TiO3)-xNaNbO3 (BNT-BKT-xNN) piezoceramics were synthesized using NN templates to resolve both obstacles. Measurements of polarization and strain hysteresis loops as well as phase transition temperature revealed a phase evolution from ergodic relaxor to ferroelectric phases, generating a high strain of 0.43% and large Smax/Emax = 720pm/V for textured BNT-BKT-4NN ceramics. The field-dependent strain was largely depended on the degree of texturing. Most intriguingly, grain-oriented specimens provided excellent actuating performance characterized by both large Smax/Emax = 693 pm/V at a low driving field of 45 kV/cm and enhanced temperature stability with Smax/Emax = 537pm/V at 120 °C. This was basically ascribed to the facilitated switching between ergodic relaxor and ferroelectric phases owing to the grain-oriented structure. As a consequence, design of <00l> oriented microstructure opens the possibility to produce efficient BNT-based piezoceramics for transferral into real-world applications.  相似文献   

14.
    
The origin of nonuniform microstructure and abnormal grain growth (AGG) was investigated in flash sintered 3 mol% yttria-stabilized zirconia (3YSZ) ceramics. The microstructural homogeneity decreased with increasing direct current (DC) density and with dwell time in a flash state, eventually resulting in AGG in the specimen core, the first observation of AGG in 3YSZ. Abnormal grains up to 100 μm in size emerged when the DC density was ≥160 mA/mm2, and the specimen's density exceeded 99% of theoretical, starting from the cathode and propagating toward the anode. The results are discussed by comparison with established mechanisms and previous experimental evidence concerning AGG in oxides, focusing on the possible effects of the electrochemical reduction at the cathode end of the specimen.  相似文献   

15.
碳化硅木质陶瓷的显微结构及力学性能   总被引:1,自引:0,他引:1  
以汉麻秆芯碳化后的碳粉为原料,分别采用注浆和干压成型工艺制备素坯,通过反应烧结制备出碳化硅木质陶瓷.研究了注浆成型工艺中悬浮稳定剂的种类和添加量对浆料性能的影响.采用激光共聚焦显微镜、扫描电子显微镜和X射线衍射仪等分析了碳化硅木质陶瓷的显微结构、物相组成及力学性能.结果表明:采用注浆成型制备的碳化硅木质陶瓷力学性能优异,实测的游离硅含量同理论计算结果一致,说明渗硅过程中硅碳反应充分,烧结体显微硬度、弯曲强度、弹性模量和断裂韧性分别为22.3 GPa、397 MPa、290 GPa和3.0 MPa·m1/2.  相似文献   

16.
In this work, we report on the anisotropic growth of α-Fe2O3 nanoslabs which are produced by co-precipitation method with the addition of sucrose. In our previous work, we have argued that such behavior can be related with the chelating agent. Experiments of X-ray diffraction (XRD), high-resolution transmission electronic microscopy (HRTEM) and magnetic measurements as a function of temperature and an applied magnetic field are used to characterize the samples. The HRTEM image of the sample prepared with 10 mmol/l of sucrose consists of faceted-like nanoslabs while that prepared without sucrose exhibits particles with a non-uniform shape. In this way, we can state that both the HRTEM images and the analysis of the XRD patterns show clearly a preferential growth of the [110] crystallographic direction. To strengthen our supposition, besides T- and field-dependence of magnetization are consistent with a superparamagnetic behavior the fit of the (Zero Field Cooling and Field Cooling) ZFC-FC curve for sample grown with 10 mmol/l of sucrose presents a strong increase of the effective anisotropy constant, Keff, which can be related with the increasing of the shape magnetic anisotropy.  相似文献   

17.
A metal reference line (MRL) technique is described for the measurement of surface–grain-boundary dihedral angles, Ψs, from thermal grooves at a sample surface using scanning electron microscopy (SEM). Metal lines deposited onto a thermally grooved surface using photolithography conform to the contours of the grain-boundary groove and provide a high-contrast reference line for measuring Ψs by SEM. Measurements of Ψs from optical interferometry and calculated from groove dimensions using surface diffusion models of thermal grooving are compared with the metal reference line measurements from the same thermally grooved surface of MgO-doped Al2O3. Distributions of Ψs are found to shift to lower angles and approach the true Ψs value as the resolution of the technique increases, with the MRL technique having the highest resolution, a median angle of 113°± 1° and a distribution of angles from 90°± 5° to 139°± 3°.  相似文献   

18.
    
Dense polycrystalline cBN (PcBN)–SiCw composites were fabricated by a two-step method: First, SiO2 was coated on the surface of cubic boron nitride (cBN) particles by the sol-gel method. Then, silicon carbide whisker (SiCw)- coated cBN powder was prepared by carbon thermal reaction between SiO2 and carbon powders at 1500°C for 2 hour. Then, cBN–SiCw complex powders were sintered by high-pressure and high-temperature sintering technology using Al, B, and C as sintering additives. The phase compositions and microstructures of cBN–SiCw composites were investigated by X-ray diffraction and scanning electron microscopy, respectively. It was found that the SiCw and Al3BC3 had been fabricated by in situ reaction, which cannot only promote densification but also improve mechanical properties. The relative density of PcBN composites increased from 96.3% to 99.4% with increasing SiCw contents from 5 to 20 wt%. Meanwhile, the Vickers hardness, fracture toughness and flexural strength of as-obtained composites exhibited a similar trend as that of relative density. The composite contained 20 wt% of SiCw exhibited the highest Vickers hardness and fracture toughness of 42.7 ± 1.9 GPa and 6.52 ± 0.21 MPa•m1/2, respectively. At the same time, the flexural strength reached 406 ± 21 MPa.  相似文献   

19.
20.
    
Polycrystalline SiC ceramics with 10 vol% Y2O3-AlN additives were sintered without any applied pressure at temperatures of 1900-2050°C in nitrogen. The electrical resistivity of the resulting SiC ceramics decreased from 6.5 × 101 to 1.9 × 10−2 Ω·cm as the sintering temperature increased from 1900 to 2050°C. The average grain size increased from 0.68 to 2.34 μm with increase in sintering temperature. A decrease in the electrical resistivity with increasing sintering temperature was attributed to the grain-growth-induced N-doping in the SiC grains, which is supported by the enhanced carrier density. The electrical conductivity of the SiC ceramic sintered at 2050°C was ~53 Ω−1·cm−1 at room temperature. This ceramic achieved the highest electrical conductivity among pressureless liquid-phase sintered SiC ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号