首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transparent Eu3+-doped (0.05–0.15 at. %) alumina ceramics with fine-grained microstructure were prepared and studied in terms of optical properties and photoluminescence (PL). The light transmission through ceramics up to dopant concentrations 0.125 at. % is dominated by birefringence scattering at grain boundaries. As confirmed by HRTEM/EDS element mapping, high photoluminescence intensity was achieved as the result of the dopant segregation at grain boundaries. The PL emission spectra of Al2O3:Eu3+ ceramics exhibited red light emissions with the highest intensity (394 nm excitation) for material containing 0.125 at. % of Eu3+. The luminescence decay was single-exponential with a lifetime ~1.5 ms. The post-sintering reduction of Eu3+→Eu2+ under an H2 atmosphere (at 1300 °C) was difficult. Two simultaneously coexisting Eu2+ emitting PL centers were identified, one emitting blue light with average decay constant of 150 ns, and the other green light (more intense) with average decay constant of 1.3 μs.  相似文献   

2.
Transparent Cr2O3-doped alumina ceramics were prepared by slip casting, followed by pre-sintering in ambient atmosphere and hot isostatic pressing. The effect of dopant concentration on material properties, including microstructure and optical properties was evaluated. Real in-line transmittance in the range of 20–44 % was measured for the ceramics with the mean grain size <520 nm: the transmittance decreased with increasing grain size and Cr content. The excitation spectra consisted of two broad bands with maxima at 404 nm and 558 nm, corresponding to 4A2g4T1g and 4A2g4T2g transitions of Cr3+ ions in octahedral sites of α-Al2O3. The intensive deep red narrow emissions under violet/green light excitation, R-lines (2Eg4A2g transition), were observed at 692.5 nm and 693.8 nm, that are very close to ruby single crystal. The highest emission was achieved at the Cr3+ concentration of 0.4 at.%. The luminescence decay curves exhibited single-exponential behaviour with decay times of ∼3.6 ms.  相似文献   

3.
We report on successful preparation of Er3+ doped transparent alumina (0.1–0.17 at.%) exhibiting visible light photoluminescence using wet shaping method and hot isostatic pressing. The effects of dopant amount, type of doping powder and powder pre-treatment on final microstructure, real in-line transmittance and photoluminescence characteristics were studied.The real in-line transmittance ranged between 28 and 56%, depending on processing parameters. The transparency decreased with increased amount of dopant. The decrease is dependent on the type of doping powder and its pre-treatment.The photoluminescence spectra measured in both visible and NIR region showed typical emission bands due to the presence of Er3+ ions. The decay profiles of the 4S3/2  4I15/2 transition were fitted with a 2-exponential function, with faster component in the range of 360–700 ns and slower component around 1.6-2.4 μs. The intensity of emissions and lifetime of the 4S3/2 level decrease significantly with increasing concentration of Er3+ ions.  相似文献   

4.
The Eu3+-doped transparent aluminas were prepared by wet shaping technique followed by pressure-less sintering and hot isostatic pressing. The effect of dopant amount on microstructure, real in-line transmission (RIT), photoluminescence (PL) properties, hardness and fracture behaviour was studied. The RIT decreased with increasing amount of the dopant. The PL emission spectra of Al2O3:Eu3+ ceramics exhibited predominant red light emission with the highest intensity (under 394 nm excitation) for material containing 0.125 at.% of Eu3+ and colour coordinates (0.645, 0.355) comparable with commercial red phosphors. The doping resulted in hardness increase from 26.1 GPa for undoped alumina to 27.6 GPa for Eu-doped sample. The study of fracture surfaces showed predominantly intergranular crack propagation micro-mechanism.  相似文献   

5.
This work reports the effect of the Dy concentration on the persistence luminescence properties of Eu doped barium aluminate (BaAl2O4) laser-sintered ceramics. For this study, the ceramics were first sintered using the laser sintering technique, based on a CO2 laser as the heating source, in an ambient atmosphere. The structural and morphology characteristics of the samples were investigated by x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The laser-sintered ceramics presented are shown to be phase pure (single phased), and, for highest Dy concentration sample, a spurious Dy-rich phase at the grain boundary was observed. All samples exhibit the characteristic blue-green emission from the Eu2+ ion, due to the 4f65d1–4f7 transition (495 nm), even when they have been sintered in air. Finally, a clear dependence of the persistent luminescence intensity and decay time with the Dy concentration was verified.  相似文献   

6.
《Ceramics International》2017,43(7):5557-5563
La0.1Dy0.1SrxTiO3 (x=0.80, 0.78, 0.75, 0.70) powders were synthesized via a sol-gel method, followed by sintering at 1550 °C in a reducing atmosphere of 5 vol% hydrogen in nitrogen. The microstructure and thermoelectric properties of the Sr-deficient La and Dy co-doped SrTiO3 were investigated. The result of XRD revealed that La0.1Dy0.1SrxTiO3 consisted of SrTiO3 with a cubic crystal structure as the main phase and of a small amount of Dy2Ti2O7 as the second phase. All the Sr-deficient samples exhibited a step-like microstructure. As the nominal Sr deficient content increased, the electrical conductivity of the Sr-deficient La0.1Dy0.1SrxTiO3 ceramics enhanced due to the increasing Sr and oxygen vacancies, the absolute value of the Seebeck coefficient increased a little, and the thermal conductivity decreased to ~3.0 W m−1 K−1, leading to a high ZT value of 0.19 for La0.1Dy0.1Sr0.75TiO3 at 500 °C.  相似文献   

7.
The effect of green bodies’ mesostructure on the porosity, optical properties and laser performance of reactive sintered Y3Al5O12:Nd3+ transparent ceramics was studied. Only minor changes in microstructure were revealed for green bodies without annealing and those annealed at 600, 800, 1000 °C, while average pore size increases to 140 nm for sample annealed at 1200 °C. Y3Al5O12:Nd3+ ceramics sintered at 1750 °C for 10 hours possess significant differences in the final porosity, optical and laser characteristics. Despite all green bodies exhibit a similar phase evolution and sintering behavior on heating, the differences appear in the final stage, when the latest percentage of porosity is removed. The green bodies annealed at 600 °C have an optimal mesostructure from the standpoint of uniform densification. Y3Al5O12:Nd3+ ceramics prepared using these green bodies exhibit porosity ≤0.001 vol% and yield efficient laser emission at 1.06 μm with slope efficiency as high as 67% in quasi-continuous pumping at 807 nm.  相似文献   

8.
《Ceramics International》2017,43(9):6996-7001
An efficient and flexible chemical co-precipitation method has been used to synthesize nanoscale Al2O3-GdAlO3 powders with eutectic composition. The as-synthesized powders exhibit a highly dispersive and homogeneous distribution with an average particle size of 50 nm. The phase transition in the resulting powders strongly depends upon the calcination temperature. GdAlO3 undergoes complete crystallization after calcination at 1050 °C, however, the diffraction peaks of α-Al2O3 are found at a relatively high calcination temperature of at least 1300 °C. The fully-densified Al2O3-GdAlO3 ceramic with eutectic composition obtained by hot pressing the nanoscale powders at 1500 °C exhibits a room temperature flexural strength of 556 MPa, a Vickers hardness of 17.3 GPa and a fracture toughness of 7.5 MPa m1/2. The high temperature flexural strength of the as-sintered Al2O3-GdAlO3 ceramic is measured to be 515 MPa after bending tests at 1000 °C.  相似文献   

9.
Different doping elements have been used to reduce the dielectric losses of CaCu3Ti4O12 ceramics, but their dielectric constants usually are undesirably decreased. This work intends to reduce their dielectric losses and simultaneously enhance their dielectric constants by co-doping Y3+ as a donor at A site and Al3+ as an acceptor at B site for substituting Ca2+ and Ti4+, respectively. Samples with different doping concentrations x = 0, 0.01, 0.02, 0.03, 0.05 and 0.07 have been prepared. It has been shown that their dielectric losses are generally reduced and their dielectric constants are simultaneously enhanced across the frequency range up to 1 MHz. The doped sample with x = 0.05 exhibits the highest dielectric constant, which is well over 104 for frequency up to 1 MHz and is about 20% higher than the undoped sample. Impedance spectra indicate that the doped samples have much higher grain boundary resistance than the undoped one.  相似文献   

10.
《Ceramics International》2016,42(12):13990-13995
A series of Yb3+/Er3+ codoped transparent oxyfluoride glass ceramics with various amounts of Yb3+ have been successfully fabricated and characterized. Under 980 nm laser prompting, the samples produce intense red, green and blue up-conversion emissions, and the emission intensities increase with Yb3+ concentration and heat treatment temperature. Before losing good transparency in the visible region, optimum emission intensities are obtained for the sample with 25 mol% of Yb3+ at a heat treatment temperature of 680 °C. A possible up-conversion mechanism is proposed from the dependence of emission intensities on pumping power. The fluorescence intensity ratio between the two thermally coupled levels 2H11/2 versus 4S3/2 was measured with the laser output power of 57 mW to avoid the possible laser induced heating effect. The fluorescence intensity ratio values in the temperature range from 295 K to 723 K can be well fitted with the equation: A exp (−∆E/kBT), where A = 6.79 and ∆E=876 cm−1. The relative temperature sensitivity at 300 K was evaluated to be 1.4% K−1. All the results suggest that the Yb3+/Er3+ codoped CaF2 glass ceramics is an efficient up-conversion material with potential in optical fiber temperature sensing.  相似文献   

11.
Transparent ceramics of 10% Yb doped Lu2O3 was fabricated by spark plasma sintering. The operating vital parameters in yielding transparency and mutual effects of sintering, pressure, dwell time, heating rate and annealing temperature on microstructure have been investigated. Fully compacted specimens were obtained at 1250 °C and the average grain size increased from few nm up to 5 μm until 1700 °C, above which abnormal grain growth was witnessed. The post-annealing of sintered ceramics at 1200 °C removes discoloration and improves transparency. The ceramics prepared at 1700 °C with dwell time of 5 min and heating rate at 50 °C/min shows the maximum transmittance with a thickness of 2 mm of 55% at a wavelength of 2 μm.  相似文献   

12.
Guangyu Dong  W. Li 《Ceramics International》2021,47(14):19955-19958
The sintering behavior, microstructure and microwave dielectric properties of Al2O3 ceramics co-doped with 3000ppmCuO2+6000ppmTiO2+500ppmMgO (Cu/Ti/Mg) have been investigated. The results show that 1 wt% Cu/Ti/Mg can reduce the sintering temperature of Al2O3 ceramics effectively. Samples with relative densities of ≥97% and uniform microstructure can be obtained when sintered at 1150 °C. Higher temperature can further increase the density of the sample, but it inevitably leads to abnormal grain growth. Meanwhile, the investigation results show that the low-firing Al2O3 ceramics have good microwave dielectric properties especially high Q × f value. A high Q × f value of 109616 GHz is able to be obtained for the 1150 °C sintered sample. The reason for the low temperature densification, abnormal grain growth behavior and the changing trend of the microwave dielectric properties are discussed in the paper.  相似文献   

13.
Dense alumina ceramics doped with 5 wt% 4CuO-TiO2-2Nb2O5 composite sintering aids were obtained at low sintering temperatures of 950∼975 °C. The ceramic sintered at optimal condition shows good microwave dielectric properties (εr = 12.7, Q × f = 7400 GHz), high thermal conductivity (18.4 W/m K) and high bending strength (320 MPa). TEM and EDS analysis revealed that amorphous Cu-Ti-Nb-O interfacial films with nanometer thickness formed at the grain boundaries, which could provide paths of mass transportation for densification. Al3+ ions may be involved in mass transportation through substitution by Ti3+ and Ti4+ ions near the grain boundary during the sintering process. The accumulation of copper ions at the trigeminal grain boundary was observed. The migration and reaction of copper ions in grain boundaries may also play an important role in promoting mass transportation and low-temperature densification of alumina ceramics.  相似文献   

14.
《Ceramics International》2015,41(7):8755-8760
0–0.7 at% Cr:Y2O3 transparent ceramics were prepared by vacuum sintering. The optimum in-line transmittance in the visible and near infrared region is 78%, and the Vickers hardness of the sintered 0.1 at% Cr:Y2O3 is 10.1 GPa, respectively. The mechanism of Cr-doped and the optical properties has been discussed. The results indicated that the Cr:Y2O3 transparent ceramic is a promising laser material with enhanced mechanical property.  相似文献   

15.
《Ceramics International》2017,43(15):12258-12262
The Dy3+ doped SmCrO3 polycrystalline ceramics are prepared by solid state method. The structure and magnetic properties are investigated. All samples show orthorhombic structure with space group Pnma. Three magnetic transitions are detected in Dy3+ doped SmCrO3 samples, which arise from the Cr3+-Cr3+ interactions and the spin reorientation of Cr3+, respectively. Both field cooled (FC) and zero field cooled (ZFC) exchange bias (EB) effects are observed in the prepared Sm1-xDyxCrO3 (x = 0 − 0.5) samples below the spin reorientation temperature (TSR), and the EB field (HEB) increases dramatically below TSR. With the increase of the doping level, the HEB is depressed. Three anomalous variations of magnetic entropy change (ΔSM) derived from the isothermal magnetization are observed, which are consistent with the magnetic transitions. Compared with the ΔSM after ZFC processes, the anomalous variations of ΔSM at ~25 K almost disappear after FC processes due to the enhanced unidirectional anisotropy, and no obvious influence is observed for the other two anomalous variations after FC processes.  相似文献   

16.
Transparent polycrystalline ceramics (TPCs) are crystalline materials with single-crystal-like transparency, which, however, have to rely on fabrication processes with a relatively high cost. Here, we produced lab-scale TPCs based on the typical refractory Y2O3-Al2O3 system, through full congruent crystallization of the parent glass prepared by aerodynamic levitation melting method. Doping of the glass and TPCs by rare-earth (RE) ions (Ce3+, Tb3+, Nd3+, and Yb3+) and transition-metal (TM) ions (Cr3+) results in strong visible and near-infrared (NIR) photoluminescence with high quantum yield. The dominance of Stark splitting of the emission band for RE and TM ions in the TPCs as compared with that of the glass confirms crystallization of the parent glasses.  相似文献   

17.
Al2O3-Cr2O3 refractories have excellent slag corrosion resistance and can adapt to the oxidation/reduction atmosphere in the smelting reduction ironmaking furnace. However, Al2O3-Cr2O3 refractories have poor mechanical properties and sintering properties. In order to improve the mechanical properties of Al2O3-Cr2O3 materials, the CaAl12O19 reinforced Al2O3-Cr2O3 composites were prepared by pressureless sintering process, and the influences of CaO content on the sintering properties, mechanical properties, and microstructure evolution of the composites were studied. The results show that a small amount of CaO can significantly improve the compactness of the composites, which is mainly due to the formed sheet-like CA6 fill the gap between the solid solutions, and reduces the porosity of the composites. In addition, the sheet-like CA6 makes the connection between solid solutions closer, and the intergranular fracture gradually transforms into a mixed mode of intergranular and transgranular fracture. The best mechanical propertie is observed at S4 with the CaO content of 2 wt.%. Compared with sample S0 without CaO, the hardness, compressive strength and flexural strength of the S4 were increased by 35.19 %, 49.69 %, and 68.34 %, respectively. The addition of excessive CaO will deteriorate the mechanical properties of the composites, because the formation of a large number of layered CA6 increases the porosity of the composites. Furthermore, a small amount of CaO addition can significantly improve the thermal shock resistance of the composites. After 10 and 20 thermal shock cycles, the strength loss rates of S4 are only 5.83 % and 8.74 %, respectively.  相似文献   

18.
Three-phase alumina/YAG/yttria-stabilized cubic zirconia (YSZ) composites were fabricated by a solid-state reaction route starting from commercial powders of Al2O3, Y2O3 and monoclinic ZrO2. The final phases Al2O3, YAG and YSZ were obtained after calcination of the powder mixtures at 1400 °C. Dense bulk composites were obtained after sintering, with a homogeneous microstructure of fine and equiaxed grains with sizes of 1 μm. Compressive mechanical tests were performed at 1300–1450 °C in air at constant load and at constant initial strain rate. A brittle-to-ductile transition was found with increasing temperature. Grain boundary sliding is the main deformation mechanism in the ductile regime, characterized by a stress exponent of 2 and by the absence of dislocation activity and changes in grain morphology. Alumina seems to be the rate-controlling phase owing to the improvement in creep resistance by the presence of yttrium and zirconium of the other two phases.  相似文献   

19.
《应用陶瓷进展》2013,112(7):417-421
The Nd:YAG transparent ceramics with addition of Lu3+ ions were fabricated by co-precipitation method and vacuum sintering. Pure YAG phases were obtained when Lu3+ ion content was kept under 4.5?at.-%. Lattice constant of polycrystalline ceramic with 0.8?at.-% Lu3+ calculated from XRD patterns was similar to that of YAG single crystal, and its fluorescent intensity arising from 4F3/2?→?4I9/2 transition of Nd3+ ions reached the maximum although the ceramic was opaque. The results indicated that Lu3+ ions under 1.5?at.-% relieved strains from lattice distortion and enhanced the fluorescent intensity.  相似文献   

20.
5at.% Yb:Lu2O3 transparent ceramics were fabricated successfully by vacuum sintering along with hot isostatic pressing posttreatment from the nanopowders. The influences of calcination temperature on morphology and microstructures of powders and ceramics were studied systematically. The optimal ceramic sample from the nanopowder calcined at 1050°C shows uniform and dense microstructure with the in-line transmittance of 81.5% at 1100 nm. The results of the thermal measurements, that is, thermal conductivity and specific heat, were related to the changes occurring in the microstructure of the ceramics studied. It was shown on this basis that appropriate control of the technological process of sintering ceramics makes it possible to obtain laser ceramics with very good thermal properties as well as maintaining their high optical quality. Concerning the laser performance, the highest-optical quality 5at.% Yb:Lu2O3 sample was pumped in quasi-continuous wave conditions measuring a maximum output power of 2.59 W with a corresponding slope efficiency of 32.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号