首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic-Fatigue Behavior of SiC/SiC Composites at Room and High Temperatures   总被引:2,自引:0,他引:2  
Tension-tension cyclic-fatigue tests of a two-dimensional-woven-SiC-fiber-SiC-matrix composite (SiC/SiC) prepared by chemical vapor infiltration (CVI) were conducted in air at room temperature and in argon at 1000°C. The cyclic-fatigue limit (107 cycles) at room temperature was ∼160 MPa, which was ∼80% of the monotonic tensile strength of the composite. However, the fatigue limit at 1000°C was only 75 MPa, which was 30% of the tensile strength of the composite. No difference was observed in cyclic-fatigue life at room temperature and at 1000°C at stresses >180 MPa; however, cyclic-fatigue life decreased at 1000°C at stresses < 180 MPa. The fracture mode changed from fracture in 0° and 90° bundles at high stresses to fracture mainly in 0° bundles at low stresses. Fiber-pullout length at 1000°C was longer than that at room temperature, and, in cyclic fatigue, it was longer than that in monotonic tension. The decrease in the fatigue limit at 1000°C was concluded to be possibly attributed to creep of fibers and the reduction of the sliding resistance of the interface between the matrix and the fibers.  相似文献   

2.
Thermal energy storage (TES) materials constituted by a microencapsulated paraffin having a melting temperature of 6°C and a thermoplastic polyurethane (TPU) matrix were prepared through fused deposition modeling. Scanning electron microscope (SEM) micrographs demonstrated that the microcapsules were homogeneously distributed within the matrix, with a rather good adhesion within the layers of 3D printed specimens, even at elevated concentrations of microcapsules. The presence of paraffin capsules having a rigid polymer shell lead to a stiffness increase, associated to a decrease in the stress and in the strain at break. Tensile and compressive low-cycles fatigue tests showed that the presence of microcapsules negatively affected the fatigue resistance of the samples, and that the main part of the damage occurred in the first fatigue cycles. After the first 10 loading cycles at 50% of the stress at break, a decrease in the elastic modulus ranging from 60% for neat TPU to 80% for composite materials was detected. This decrease reached 40% of the original value at 90% of the stress at break after 10 cycles. Differential scanning calorimetry tests on specimens after fatigue loading highlighted a substantial retention of the original TES capability, in the range of 80%–90% of the pristine value, even after 1000 cycles, indicating that the integrity of the capsules was maintained and that the propagation of damage during fatigue tests took probably place within the surrounding polymer matrix. It could be therefore concluded that it is possible to apply the developed blends in applications where the materials are subjected to cyclic stresses, both in tensile and compressive mode.  相似文献   

3.
In this study, oxide/oxide ceramic matrix composite test coupons were quasi‐statically indented and tested for tensile strength and fatigue life in a combustion environment. The combustion environment simulated the gas turbine engine environment in an aircraft. Two different dent sizes were created on two different sets of test coupons with a blunt conical indentor. During mechanical testing, the combustion flame simultaneously impinged on the dent region resulting in a maximum test coupon surface temperature of 1250 ± 50°C. For a life of 90 000 cycles, the fatigue limit in the combustion environment was 85% of the postindentation degraded tensile strength. Microscopy images of the failed test coupons showed damage modes of fiber fracture and matrix cracking at the dent site. The run‐out test coupons which did not fail within 90 000 cycles showed residual strength that was not significantly different from that of their virgin counterparts.  相似文献   

4.
《Ceramics International》2017,43(12):8769-8777
In this paper, the tension-tension fatigue behavior of unidirectional SiC/Si3N4 ceramic-matrix composite with strong and weak interface bonding at room temperature has been investigated using a micromechanical approach. The hysteresis loops models considering different interface slip cases have been developed to establish the relationships between fatigue hysteresis loops, hysteresis dissipated energy, hysteresis modulus, and the interface shear stress. The damage evolution process under tension-tension fatigue loading has been analyzed using hysteresis loops. By comparing experimental fatigue hysteresis dissipated energy with theoretical computational values, the interface shear stresses of SiC/Si3N4 composite with weak and strong interface bonding were obtained for different cycle numbers. The fatigue life S‒N curves and broken fibers fraction versus cycle number curves corresponding to different fatigue peak stresses have been predicted. For SiC/Si3N4 with strong interface bonding, the fatigue limit stress approaches to 75% tensile strength, which is much higher than that of composite with weak interface bonding, i.e., 58% tensile strength, due to the higher interface shear stress degradation rate for weak bonding interface.  相似文献   

5.
Isothermal fatigue and in-phase thermomechanical fatigue (TMF) tests were performed on a unidirectional, continuous-fiber, Nicalon®-reinforced calcium aluminosilicate glass-ceramic composite ([O]16, SiC/CAS-II). Monotonic tensile tests were performed at 1100°C (2012°F) and 100 MPa/s (14.5 ksi/s) to determine the material's ultimate strength (σult) and proportional limit (σpl). Isothermal fatigue tests at 1100°C employed two loading profiles, a triangular waveform with ramp times of 60 s and a similar profile with a superimposed 60-s hold time at σmax. All fatigue tests used a σmax of 100 MPa (40% of σpl), R = 0.1. TMF loading profiles were identical to the isothermal loading profiles, but the temperature was cycled between 500° and 1100°C (932° and 2012°F). All fatigued specimens reached run-out (1000 cycles) and were tested in tension at 1100°C immediately following the fatigue tests. Residual modulus, residual strength, cyclic stress-strain modulus, and strain accumulation were all examined as possible damage indicators. Strain accumulation allowed for the greatest distinction to be made among the types of tests performed. Fiber and matrix stress analyses and creep data for this material suggest that matrix creep is the primary source of damage for the fatigue loading histories investigated.  相似文献   

6.
The interlaminar shear strength of 2D needled C/SiC composites was measured using the double-notch shear test method. Interlaminar shear tests were performed under compressive and tensile loading. Shear stress–strain response and shear strain field evolution were studied using the digital image correlation (DIC) technique. The results show that the interlaminar shear strength of the specimen using the compressive loading method is 15% higher than that of the tensile loading method. Severe shear strain concentration was observed near the upper notch of the tensile loading specimen. Acoustic emission (AE) was utilized to monitor the damage during the tests. Typical damage mechanisms were categorized according to AE signal characteristics. The statistical results show that more matrix cracks were produced in the tensile loading specimen and no separate fiber/matrix debonding signal was detected in both specimens.  相似文献   

7.
《Ceramics International》2020,46(14):22116-22126
The monotonic tensile and multi-step fatigue tests of 2D woven SiCf/SiC composite were performed to explore the damage development, respectively. The acoustic emission-based technique was used to analyze the damage state and select the peak stresses for fatigue tests. The damage evolution after specific mechanical tests was characterized by optical microscopy and scanning electron microscopy. Cracks are prone to occur in the vicinity of flaws and boundaries of different matrix components under relatively low fatigue stress. The cyclic fatigue stress can do much harm to the interfaces and facilitate the interfacial debonding. The damage characteristics of five types of cracking, fiber breakage and pull-out, and interfacial debonding of the composite after specific mechanical tests are concluded and discussed in detail, which can offer help for deeper analysis of the oxidation mechanism in service and more reasonable design of SiCf/SiC composite.  相似文献   

8.
《Ceramics International》2021,47(22):31457-31469
The present work investigated the effects of thermal cycles in air on the tensile properties of a two-dimensional carbon fibre reinforced silicon carbide composite (2D C/SiC) prepared by chemical vapour infiltration at different heating rates. The composite was exposed to different cycles of thermal shock between 20 °C and 1300 °C in air. The damage mechanisms were investigated by AE online monitoring and fractured morphology offline analysis. The tensile strength of 2D-C/SiC decreases with increasing thermal cycles. However, the modulus only decrease within 40 cycles. Due to oxidation, with the decrease in heating rate, the residual properties of the material decrease more obviously. Meanwhile, the results of AE online monitoring and fracture analysis show that the matrix damage is more serious at higher heating rate and that more delamination occours in tensile fractures. The above results indicate that for the thermal shock of 2D C/SiC composites in air, oxidative damage plays a key role in the residual properties.  相似文献   

9.
Tensile properties of a cross-ply glass-ceramic composite were investigated by conducting fracture, creep, and fatigue experiments at both room temperature and high temperatures in air. The composite consisted of a barium magnesium aluminosilicate (BMAS) glass-ceramic matrix reinforced with SiC fibers with a SiC/BN coating. The material exhibited retention of most tensile properties up to 1200°C. Monotonic tensile fracture tests produced ultimate strengths of 230–300 MPa with failure strains of ∼1%, and no degradation in ultimate strength was observed at 1100° and 1200°C. In creep experiments at 1100°C, nominal steady-state creep rates in the 10−9 s−1 range were established after a period of transient creep. Tensile stress rupture experiments at 1100° and 1200°C lasted longer than one year at stress levels above the corresponding proportional limit stresses for those temperatures. Tensile fatigue experiments were conducted in which the maximum applied stress was slightly greater than the proportional limit stress of the matrix, and, in these experiments, the composite survived 105 cycles without fracture at temperatures up to 1200°C. Microscopic damage mechanisms were investigated by TEM, and microstructural observations of tested samples were correlated with the mechanical response. The SiC/ BN fiber coatings effectively inhibited diffusion and reaction at the interface during high-temperature testing. The BN layer also provided a weak interfacial bond that resulted in damage-tolerant fracture behavior. However, oxidation of near-surface SiC fibers occurred during prolonged exposure at high temperatures, and limited oxidation at fiber interfaces was observed when samples were dynamically loaded above the proportional limit stress, creating micro-cracks along which oxygen could diffuse into the interior of the composite.  相似文献   

10.
This study examined the rupture mechanisms of an orthogonal 3D woven SiC fiber/BN interface/SiC matrix composite under combination of constant and cyclic tensile loading at elevated temperature in air. Monotonic tensile testing, constant tensile load testing, and tension–tension fatigue testing were conducted at 1100 °C. A rectangular waveform was used for fatigue testing to assess effects of unloading on the damage and failure behavior. Microscopic observation and single-fiber push-out tests were conducted to reveal the rupture mechanisms. Results show that both oxidative matrix crack propagation attributable to oxidation of the fiber–matrix interface and the decrease in the interfacial shear stress (IFSS) at the fiber–matrix interface significantly affect the lifetime of the SiC/SiC composites. A rupture strength degradation model was proposed using the combination of the oxidative matrix crack growth model and the IFSS degradation model. The prediction roughly agreed with the experimentally obtained results.  相似文献   

11.
Z-pinned joints prepared by chemical vapour infiltration are widely used in ceramic matrix composite components. Excellent fatigue behaviour is important for structural safety. In this study, 2D C/SiC Z-pinned joints were loaded in axial direction of the pins under static and cyclic loading. Internal damage was monitored in situ by an acoustic emission system. The binding force between pin and hole is relatively strong. Meanwhile, the joints exhibite promising resistance to fatigue. The residual strength increased first with the fatigue cycles then decreased after 105 cycles. Microstructural analysis indicated that full-developed cracks and local stress redistribution resultes in the increase in the strength of the joints. The acoustic emission analysis also provides a supplementary understanding of the damage mechanism. The results show that damage fully develops at the early stage of fatigue. When the specimen is reloaded, less AE events are collected before the fatigue maximum stress.  相似文献   

12.
The influence of cyclic loading frequency on the tensile fatigue life of a woven-carbon-fiber/SiC-matrix composite was examined at room temperature. Tension-tension fatigue experiments were conducted under load control, at sinusoidal frequencies of 1, 10, and 50 Hz. Using a stress ratio (σminmax) of 0.1, specimens were subjected to maximum fatigue stresses of 310 to 405 MPa. There were two key findings: (1) the fatigue life and extent of modulus decay were influenced by loading frequency and (2) the postfatigue monotonic tensile strength increased after fatigue loading. For loading frequencies of 1 and 10 Hz, the fatigue limit (defined at 1 × 106 cycles) was approximately 335 MPa, which is over 80% of the initial monotonic strength of the composite; at 50 Hz, the fatigue limit was below 310 MPa. During 1- and 10-Hz fatigue at a maximum stress of 335 MPa, the modulus exhibited an initially rapid decrease, followed by a partial recovery; at 50 Hz, and the same stress limits, the modulus continually decayed. The residual strength of the composite increased by approximately 20% after 1 × 106 fatigue cycles at 1 or 10 Hz under a peak stress of 335 MPa. The increase in strength is attributed in part to a decrease in the stress concentrations present near the crossover points of the 0° and 90° fiber bundles.  相似文献   

13.
The influence of oxidation on the fatigue life of two-dimensional carbon/silicon carbide composites in water vapor containing environments at 1300 °C was investigated. Tension–tension fatigue experiments were conducted at sinusoidal frequency of 3 Hz. Using a stress ratio (σmin/σmax) of 0.1, specimens were subjected to peak fatigue stresses of 90, 120 and 150 MPa. The mean residual strength of the specimens after survived 100,000 cycles with a peak stress of 90 MPa was 83.9% of that of the as-received composite. The mean fatigue lives of the specimens subjected to peak fatigue stresses of 120 and 150 MPa were 42,048 and 13,514 cycles, respectively. Oxidation was the dominant damage mechanism, which remarkably decreased the fatigue life. Oxidizing species diffusion within the composite defects was discussed. The higher the applied stresses, the larger the equivalent radius of the defect and the shorter the fatigue life.  相似文献   

14.
An experimental investigation was performed to study the rate at which strength-controlling fatigue damage evolves in a ceramic-matrix composite. Tensile specimens of a unidirectional SiC-fiber-reinforced calcium aluminosilicate matrix composite were cycled to failure or to a preselected number of cycles under similar loading histories. The residual strength of the precycled specimens was found to be similar to that of virgin specimens. Microstructural investigations showed that the fracture surfaces of the specimens cycled to failure had a central region where fiber pullout was negligible. It is proposed that frictional heating (due to interfacial sliding) is the cause of fatigue failure. High interfacial temperatures are assumed to cause the formation of a strong interface bond, leading to internal embrittlement.  相似文献   

15.
The damage evaluation behaviour of alumina fibre-reinforced mullite ceramic matrix composites subjected to cyclic fatigue was investigated by means of acoustic emission (AE) monitoring and forced resonance techniques. AE technique provided sufficient information about the damage initiation and progression in real time whilst the forced resonance (FR) technique allowed the detection of changes in elastic modulus (E) and internal friction (Q−1) that occurred with increasing number of cyclic fatigue at room temperature. From the two non-destructive detection techniques results combined with microstructural observations, it is concluded that the composite cyclic fatigue damage evolution begins with multiple crack formation within the matrix and is followed by delamination (interfacial failure). Final failure of the composite is caused by fibre fracture and extensive cyclic sliding along the fibre/matrix interface. The strong bonding between mullite matrix and alumina fibre caused by the glassy phase within the mullite matrix determined the fatigue performance of the composite at 1350°C. Regions with glassy phase failed catastrophically as a result of early fibre fracture.  相似文献   

16.
Damage analyses of a ceramic matrix composite during fatigue and quasi-static loads were performed by acoustic emission (A.E.) monitoring. The material studied was a 2.5D C/C-SiC composite produced by chemical vapor infiltration followed by liquid silicon infiltration. The analysis done during the first 200 cycles of a fatigue test showed that the number of A.E. hits is a good parameter for the quantification of damage. Furthermore, the A.E. hit energy was associated with the type of damage. In this sense, the damage developed during the fatigue loading was related to matrix crack initiation, propagation and re-opening, as well as fiber-matrix friction. Quasi-static tests on post-fatigue samples showed that the previous fatigue loadings increased the material`s damage threshold and hindered the development of new damage. Particular attention was given to the sample after 2,000,000 cycles as this sample showed distinct A.E. signals that could be related to fiber debonding.  相似文献   

17.
《Ceramics International》2016,42(6):6850-6857
The fatigue behavior of plain-weave Cf/C–SiC composites prepared by liquid silicon infiltration (LSI) was studied under cyclic tensile stress at room temperature. The specimens were loaded with stress levels of 83% and 90% of the mean static tensile strength for 105 cycles. The cross-sections and fracture surfaces of the fatigued specimens were examined by optical microscopy (OM) and scanning electron microscopy (SEM), respectively. The results show that the specimens can withstand 105 fatigue cycles with a stress level of 90% of the static tensile strength. The retained strengths after fatigue for 105 cycles with stress levels of 83% and 90% are about 19% and 11% higher than the static tensile strength. Due to the observation of the microstructures a relief of the thermal residual stress (TRS) caused by stress-induced cracking is probably responsible for the enhancement. Furthermore, the fracture surfaces indicate that the fatigue stress results in interfacial debonding between the carbon fiber and matrix. Additionally, more single-fiber pull out was observed within the bundle segments of fatigued specimens.  相似文献   

18.
The fatigue damage process of SiC coated needled C/SiC composite specimen was monitored by acoustic emission (AE) under tension-tension cyclic loading. By analyzing the collected AE parameters of the composite, it is found that Kaiser effect enhances with the increase of stable cycles in the fatigue process. Moreover, multivariate K-means cluster analysis of AE parameters was carried out after the standardization of energy, amplitude, peak frequency and duration of AE signal. By comparing the objective function values of different number of clusters, and referring to the intra group variance and the variance between groups, the damage modes of the needled C/SiC composite are finally divided into four clusters, and the characteristics of AE parameters with different damage modes can be obtained. Furthermore, by referring to the microstructure characteristics of needled C/SiC composite, various damage modes at different fatigue stages were analyzed. In addition, the fracture morphology of the specimen was also observed by scanning electron microscope after fatigue fracture.  相似文献   

19.
A carbon fiber‐reinforced silicon carbide matrix composite with pyrolytic carbon interface (Cf‐PyC/SiC) and a protective coating was prepared by isothermal low pressure chemical vapor infiltration. Low‐cycle fatigue behavior of this material system was investigated at high temperatures up to 1800°C in a combustion environment and at room temperature in air, respectively. The combustion environment includes thermal mechanical loading, high temperatures, and oxidizing atmosphere. Low‐cycle fatigue tests were conducted at a maximum stress level of 180 MPa but at various temperatures and fatigue cycles. The residual strength variation of fatigue‐survived samples was due to different damage mechanisms in different environments.  相似文献   

20.
Ken Goto  Daisuke Katsu 《Carbon》2003,41(6):1249-1255
The tensile fatigue behavior of a cross-ply carbon-carbon (C/C) laminate was examined at room temperature. Tension-tension cyclic fatigue tests were conducted under load control at a sinusoidal frequency of 10 Hz to obtain stress-fracture cycles (S-N) relationship. The fatigue limit of the C/C was found to be 213 MPa (93% of the tensile strength), and no fracture was observed at over 104 cycles. The residual tensile strength of specimens that survived fatigue loading was enhanced with increase in fatigue cycles and applied stress. Observations of the fatigue-loaded specimens revealed that the formation of micro-cracks at the fiber-matrix interfaces was facilitated during fatigue loading. These interfacial cracks were concluded to protect the fibers from being damaged by matrix cracks and this behavior was considered to be the governing mechanism of strength enhancement by fatigue loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号