首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, TiC-SiC-Ti3SiC2 composites were synthesized by in situ reactive hot pressing using β-SiC, graphite, and TiH2 powders as initial materials. Microstructure and mechanical properties of as-prepared dense composites were systematically investigated. It was found that by increasing the initial SiC content the final SiC content in the composites increased in contrast to the decrease in TiC and Ti3SiC2 contents. In the dense composites, TiC and Ti3SiC2 grains exhibited transgranular fracture, whereas SiC particles showed intergranular fracture. The composite containing 77 vol.% TiC, 4 vol.% SiC, and 19 vol.% Ti3SiC2 had the highest flexural strength of 706.6 MPa. The composite consisting of 44 vol.% TiC, 49 vol.% SiC, and 7 vol.% Ti3SiC2 exhibited the highest Vickers hardness of 22.3 GPa and the highest fracture toughness of 6.0 MPa·m1/2.  相似文献   

2.
Composites of Cf/Ti5Si3 were prepared by spark plasma sintering a mixture of TiC-coated short carbon fiber and pre-synthesized Ti5Si3 powder. The TiC coating protects the Cf and mediates a mild interdiffusion process between Cf and Ti5Si3, rather than an exothermic reaction. Compared with traditional in-situ fabrication, the use of a pre-synthesized Ti5Si3 powder as a raw material mitigated heat release from the Ti-Si reaction and consequent grain overgrowth. The spark plasma sintering process was completed within 15 min and the relative density of the product reached 99.2 %. The Cf/Ti5Si3 composite achieved a high fracture toughness of 7.57 MPa m1/2 and a flexural strength of 518.3 MPa, which reflected increases of 255 % and 270 %, respectively, compared with those properties of monolithic Ti5Si3. These improvements are attributable to the effects of the carbon fiber reinforcement, the TiC protective coating on the Cf, inhibition of grain overgrowth, and control of interfacial reaction.  相似文献   

3.
In-situ synthesis of dense near-single phase Ti3SiC2 ceramics from 3Ti/SiC/C/0.15Al starting powder using spark plasma sintering (SPS) at 1250 °C is reported. Systematic analysis of the phase development over a range of sintering temperatures (1050–1450 °C) suggested that solid state reactions between intermediate TiC and Ti5Si3 phases lead to the formations of Ti3SiC2. The effect of starting powder composition on phase development after SPS at 1150 °C was also investigated using three distinct compositions (3Ti/SiC/C, 2Ti/SiC/TiC, and Ti/Si/2TiC). The results indicate that the starting powder compositions, with higher amounts of intermediate phase such as TiC, favor the formation of Ti3SiC2 at relatively lower sintering temperature. Detailed analysis of wear behavior indicated that samples with higher percentage of TiC, present either as an intermediate phase or a product of Ti3SiC2 decomposition, exhibited higher microhardness and better wear resistance compared to near single phase Ti3SiC2.  相似文献   

4.
The Si-rich pressureless sintering was used to fabricate the Ti3SiC2 bulk ceramic. The results show that the optimized Ti3SiC2 suspension could be prepared at the absolute value of zeta potential, pH level, PAA-NH4 dosage, and solid loading of 62.1 mV, 11, 2.0 wt%, and 50 vol%, respectively. The channels existing in the Si-free sintered body facilitated the reactants and products to diffuse to the interior and out of the Ti3SiC2 matrix, thereby forming the porous reaction layer of TiC-Ti3SiC2. The co-effects of the channels and the reaction layer of TiC-Ti3SiC2 severely lowered mechanical properties of the Si-free sintered Ti3SiC2 ceramic. On the contrary, the Si-rich sintering method isolated the volatile carbon and established a closed Si-rich atmosphere to sinter the green Ti3SiC2 cylinder. The porosity, density, fracture toughness, hardness, and flexural strength of the Si-rich sintered Ti3SiC2 ceramic reached 0.74 vol%, 4.36 g/cm3, 5.49 MPa·m1/2, 4.03 GPa, and 383 MPa, respectively.  相似文献   

5.
Ti3SiC2 was rapidly synthesized and simultaneously consolidated from the starting mixture of Ti/Si/2TiC by spark plasma sintering (SPS). An intensive reaction leading to the formation of Ti3SiC2 occurred at the measured temperature of around 1200 °C, which is several hundreds degrees lower than that of conventional reactive hot pressing. The phase composition of the product could be tailored by adjusting the process parameters. An axisymmetric preferred orientation of the Ti3SiC2 grains with well-developed (008) planes was formed, resulting in an anisotropic hardness in respect to the textured product.  相似文献   

6.
Owing to the good physicochemical compatibility and complementary mechanical properties of Ti3SiC2 and Al2O3, Ti3SiC2/Al2O3 composites are considered as ideal structural materials. However, TiC and TiSi2 typically coexist during the synthesis of Ti3SiC2/Al2O3 composites through an in-situ reaction, which adversely affects the mechanical properties of the resulting composites. In this study, Ti3SiC2/Al2O3 composites were prepared via in-situ hot pressing sintering at 1450 °C. Ge, which was used as a sintering aid, improved the purity and mechanical properties of the Ti3SiC2/Al2O3 composites. This is because Ge replaced some of the Si atoms to compensate the evaporation loss of Si to form Ti3(Si1-xGex)C2, which showed a crystal structure similar to that of Ti3SiC2. Furthermore, the molten Ge accelerated the diffusion reaction of the raw materials, increasing the overall density of the Ti3SiC2/Al2O3 composites. The optimum Ge amount for improving the mechanical properties of the composites was found to be 0.3 mol. The flexural strength, fracture toughness, and microhardness of the composite with the optimum Ge amount were 640.2 MPa, 6.57 MPa m1/2, and 16.21 GPa, respectively. The formation of Ti3(Si1-xGex)C2 was confirmed by carrying out X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy analyses. A model crystal structure of Ti3(Si1-xGex)C2 doped with 0.3 mol Ge was established by calculating the solid solubility of Ge.  相似文献   

7.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

8.
To improve the oxidation resistance of SiC composites at high temperature, the feasibility of using Ti3SiC2 coated via electrophoretic deposition (EPD) as a SiC fiber reinforced SiC composite interphase material was studied. Through fiber pullout, Ti3SiC2, due to its lamellar structure, has the possibility of improving the fracture toughness of SiCf/SiC composites. In this study, Ti3SiC2 coating was produced by EPD on SiC fiber; using Ti3SiC2‐coated SiC fabric, SiCf/SiC composite was fabricated by hot pressing. Platelet Ti3SiC2 powder pulverized into nanoparticles through high‐energy wet ball milling was uniformly coated on the SiC fiber in a direction in which the basal plane of the particles was parallel to the fiber. In a 3‐point bending test of the SiCf/SiC composite using Ti3SiC2‐coated SiC fabric, the SiCf/SiC composite exhibited brittle fracture behavior, but an abrupt slope change in the strength‐displacement curve was observed during loading due to the Ti3SiC2 interphase. On the fracture surface, delamination between each layer of SiC fabric was observed.  相似文献   

9.
《Ceramics International》2019,45(16):19808-19821
Silicon carbide whiskers (SiCw) in TiC had impressive impacts on the properties and made it possible for special applications which generally would not be conceivable with TiC alone. In the present work, SiCw reinforced TiC based composites were prepared by spark plasma sintering (SPS) technique, at the temperature of 1900 °C under the pressure of 40 MPa for sintering time of 7 min. To test out the effects of different amount of SiC whisker (0, 10, 20 and 30 vol%) on the characteristics of TiC, the sintered samples were investigated about sinterability and physical-mechanical properties. Microstructure observations and density measurements confirmed that the composites were dense with uniformly distributed reinforcement, and the specimen doped with higher than 10 vol% SiCw could attain higher relative density (>100%) than pure TiC and TiC–10 vol% SiCw. Also, the highest values for hardness (29.04 GPa) and thermal conductivity (39.2 W/mK) were achieved in specimen containing 30 vol% SiCw, whereas the optimum bending strength (644 MPa) was recorded in material containing 20 vol% SiCw. It seems that one of the reasons which contributes to this trend of properties variation is the generation of near-stoichiometric TiCx phase and new Ti3SiC2 compound.  相似文献   

10.
Spark plasma sintering (SPS) is a new sintering method having shorter sintering time and higher densification speed than the traditional sintering methods. In this paper, the Si3N4/TiC ceramic tool material is sintered by SPS. The microstructure and mechanical properties of the material under different sintering parameters are compared. The sintering process of the material is then analyzed, and the best sintering parameters are obtained. Heat the material to 1600°C and keep the temperature for 15 min, then continue to heat to 1700°C and keep the temperature for 10 min, Si3N4/TiC ceramic tool material has high mechanical properties, its bending strength, fracture toughness, and Vickers hardness are 959 MPa, 8.61 MPa·m1/2, and 15.21 GPa, respectively. The scanning electron microscope (SEM) analysis shows that under this condition, the sintering additives and Si3N4/TiC material form the liquid phase, which makes the Si3N4 particles rearrange, dissolve, precipitate, and transform into rod shape β-Si3N4. In addition, under the action of pulse current and external pressure, electric sparks are generated between TiC particles, which allows the material transfer and particle refinement. Therefore, the β-Si3N4 has uniform grain size, and it is vertically and horizontally arranged in the structure, which makes the material have excellent mechanical properties.  相似文献   

11.
Ti3SiC2/3Y-TZP (3 mol% Yttria-stabilized tetragonal zirconia polycrystal) composites were fabricated by spark plasma sintering (SPS). The effect of Ti3SiC2 content on room-temperature mechanical properties and microstructures of the composites were investigated. The Vickers hardness and bending strength of the composites decreased with the increasing of Ti3SiC2 content whereas the fracture toughness increased. The maximum fracture toughness of 9.88 MPa m1/2 was achieved for the composite with 50 vol.% Ti3SiC2. The improvement of the fracture toughness is owing to the crack deflection, crack bridging, the transformation toughening effects.  相似文献   

12.
The aim of this work was to investigate the effect of silicon content on the formation and morphology of Ti3SiC2 based composite via infiltration of porous TiC preforms. The gelcasting process was used for fabrication of preforms. It was found that the infiltrated sample at 1500 °C for 90 min from a mixture of 3TiC/1.5Si containing 92 wt.% Ti3SiC2. With the increasing of TiC and SiC impurity phases, Vickers hardness was increased to the maximum value of 12.9 GPa in Ti3SiC2–39 wt.%TiC composite. Microscopic observations showed that the Ti3SiC2 matrix was composed of columnar, platelike and equiaxial grains with respect to silicon content.  相似文献   

13.
《Ceramics International》2020,46(6):7861-7870
This study proposes a combustion-based ceramic matrix composite processing technique intended on single-step in situ deposition of single-crystal SiC nanowires (SiCnw) on the surface of carbon fibers (Cf) and formation of SiCnw–reinforced SiC matrix. This was accomplished by Ta-catalyzed combustion of poly-(C2F4)-containing reactive mixtures with pre-mixed chopped Cf. Depending on the combustion conditions, carbon fiber surface is subjected either to formation of diffusion layers, ceramic particle incrustation or growth of continuous arrays of carbon-coated single-crystal SiCnw with a nearly defect-free lattice, 10–50 nm diameter and 15–20 μm length. Thermodynamics, phase and structure formation mechanisms are explored, and the optimal conditions are outlined for reproducible Cf/in situ SiCnw dual reinforcement of SiC-based ceramics. Hot pressing at 1500 °C produced Cf/in situ SiCnw-reinforced ceramic SiC–TaSi2 specimens with a relative density of 97%, 19 GPa Vickers hardness, 3-point flexural strength σ = 420 ± 70 MPa and fracture toughness K1C = 12.5 MPa m1/2.  相似文献   

14.
《Ceramics International》2017,43(18):16204-16209
Cf/Ti3SiC2-SiC composites with different content of short carbon fibers were fabricated by the combination of compression molding and pressureless sintering. Microstructure and mechanical behavior of the composites were studied to evaluate the comprehensive performance of the material. In comparison, composites without carbon fibers were also fabricated in the same way. The results indicate that Ti3SiC2 phases were synthesized in each cases and exhibit typical laminated structure with smooth surface. With the increase of carbon fiber content, composites turn from brittle to toughness, and show obvious elastic and no-linear regions on the force-displacement curve. Moreover, composite with 30% (volume fraction) carbon fiber shows the highest flexural strength (284.03 MPa), open porosity (15.78%), and lowest density (2.37 g cm−3). There were chemical reactions occurred between carbon fibers and matrix which formed strong covalent bonds and interfaces. The micrographs also reveal that fiber bridging and pulling-out are the most important reinforcement mechanisms which contribute to the mechanical properties of the composites.  相似文献   

15.
The electrochemical corrosion behaviors of Ti3SiC2/Cu composite and polycrystalline Ti3SiC2 in a 3.5% NaCl medium were investigated by dynamic potential polarization, potentiostat polarization, and electrochemical impedance spectroscopy. The polycrystalline Ti3SiC2 was tested on the identical condition as a control. The characterizations of XRD, X-ray photoelectron spectroscopy, scanning electron microscope, and energy-dispersive spectrometer were used to study the relevant passivation behavior and corrosive mechanism. The self-corrosion current density of Ti3SiC2/Cu (6.46 × 10−6 A/cm2) was slightly higher than that of Ti3SiC2 (1.64 × 10−7 A/cm2). Under open circuit potential, the corrosion resistance of Ti3SiC2/Cu was better than that of Ti3SiC2. Ti3SiC2/Cu exhibited a typical passivation feature with a narrow passivation interval and a breakdown phenomenon. The better corrosion resistance of Ti3SiC2 was due to the more stable Si layer of the former. In comparison, for Ti3SiC2/Cu composites, Cu reacted with the reactive Si layers in Ti3SiC2 to form Cu–Si compounds and TiC, destroying the weak interaction between Si layers and Ti–C layers. In the other hand, the as-formed Cu–Si compounds and TiC dissolved during the corrosion of Ti3SiC2/Cu in the 3.5% NaCl medium, causing to the destruction of the passivation film on its surface.  相似文献   

16.
《Ceramics International》2022,48(8):11215-11227
The main aim of this study was to apply high-energy longer mechanical milling and spark plasma sintering (SPS) techniques to produce in-situ α-Ti/TiO2/TiC hybrid composites from commercially pure-Ti (CP–Ti, HCP structure) powders. The CP-Ti powders were subjected to different milling times (0, 20, 40, 60, 80, 100, and 120 h). The results showed that the powder samples milled for 120 h produced Ti, Ti3O5, TiO, TiO2 phases, and dissolved C atoms from the process control agent (toluene) which were then converted to α-Ti, TiO2, and TiC phases (formed in-situ composites) through spark plasma sintering. This was expected due to more reactivity in the 120 h sample as longer milling introduces severe and robust structural refinements. Structural evaluations with increasing milling time were carried out using XRD, HRSEM, and HRTEM. The synthesized powders were then consolidated by SPS at pressures of 50 MPa and 1323 K for 6 min. The micro-hardness results have shown that the hardness was started to increase from 1.40 GPa to 5.56 GPa with increasing milling time due to more dislocation and pinning effect produced by grain refinement and formed TiO2/TiC intermetallic particles enhancing the strength of α-Ti matrix. The α-Ti/TiO2/TiC in-situ hybrid composite bulk sample yielded an ultimate compressive strength of 1.594 GPa.  相似文献   

17.
《Ceramics International》2016,42(16):18283-18288
Short carbon fibre (Cf) reinforced silicon carbide (SiC) composites with 7.5 wt% alumina (Al2O3) as sintering additive were fabricated using spark plasma sintering (SPS). Three different Cf concentrations i.e. 10, 20 and 30 wt% were used to fabricate the composites. With increasing Cf content from 0 to 20 wt%, micro-hardness of the composites decreased ~28% and fracture toughness (KIC) increased significantly. The short Cf in the matrix facilitated enhanced fracture energy dissipation by the processes of crack deflection and bridging at Cf/SiC interface, fibre debonding and pullout. Thus, 20 wt% Cf/SiC composite showed >40% higher KIC over monolithic SiC (KIC≈4.51 MPa m0.5). Tribological tests in dry condition against Al2O3 ball showed slight improvement in wear resistance but significantly reduced friction coefficient (COF, μ) with increasing Cf content in the composites. The composite containing 30 wt% Cf showed the lowest COF.  相似文献   

18.
The impurity control in pressureless reactive synthesis of pure Ti3SiC2 from elemental powders is reported. Ti3SiC2 bulk samples were prepared by sintering compacts of ball-mixed elemental powders at 1500 °C for 2 h in lidded alumina crucibles under Ar atmosphere. Undesirable TiC impurity was successfully eliminated from the synthesized product. Product with desired phase constituent can be fabricated by preparing samples according to phase diagram data. Keeping away from the phase fields that involve TiC is a vital way to obtain pure Ti3SiC2 without containing the undesirable TiC. The key for successful impurity control in the sintering process is the conservation of mass in the reactants.  相似文献   

19.
《应用陶瓷进展》2013,112(3):162-166
Abstract

3Ti–Si–2C–0·2Al mixture powders were used to fabricate high purity Ti3SiC2 ceramic through mechanical alloying (MA) and spark plasma sintering (SPS). The effect of ball milling time on the fabrication of Ti3SiC2 by SPS was also investigated. The results showed that the mixed powders were obviously refined after the MA of 5 h. After milling of 10 h, the mixed powders containing TiC, Ti3SiC2 were synthesised by a mechanically induced self-propagating reaction. After further milling to 20 h, the yield powders were refined. Ball milling time had a remarkable effect on SPS fabrication of Ti3SiC2. A shorter milling time of 5 h only helped to increase the Ti3SiC2 content in the sintered bulk. The samples subjected to the MA treatment of 20 h had a fine and dense organisation. Ball milling of 10 h was most beneficial for fabricating dense and high purity Ti3SiC2. Ti3SiC2 bulk with a purity of 96 wt-% was obtained by MA for 10 h and subsequent SPS at 850°C. When sintered at 1100°C, Ti3SiC2 bulk with a purity of 99·3 wt-% and a relative density of 98·9% was obtained.  相似文献   

20.
A layered filler consisting of Ti3SiC2-SiC whiskers and TiC transition layer was used to join SiCf/SiC. The effects of SiCw reinforcement in Ti3SiC2 filler were examined after joining at 1400 or 1500 °C in terms of the microstructural evolution, joining strength, and oxidation/chemical resistances. The TiC transition layer formed by an in-situ reaction of Ti coating resulted in a decrease in thermal expansion mismatch between SiCf/SiC and Ti3SiC2, revealing a sound joint without cracks formation. However, SiCf/SiC joint without TiC layer showed formation of cracks and low joining strength. The incorporation of SiCw in Ti3SiC2 filler showed an increase in joining strength, oxidation, and chemical etching resistance due to the strengthening effect. The Ti3SiC2 filler containing 10 wt.% SiCw along with the formation of TiC was the optimal condition for joining of SiCf/SiC at 1400 °C, showing the highest joining strength of 198 MPa as well as improved oxidation and chemical resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号