首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D Cf/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the Cf/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of Cf/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the Cf/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C.  相似文献   

2.
Nextel 610 fibre-reinforced mullite-based matrix fabricated by Dornier Forschung was characterised at DLR Institute of Materials Research. The material was produced by the polymer route after coating the fibres with a 0.1 μm thick carbon layer. The composite was manufactured by infiltrating the fibres with a slurry containing a diluted polymer and mullite powder, curing in an autoclave and subsequently heat treating and pyrolysis of the polymer. A final heat treatment in air is performed to remove the carbon coating and to reduce the residual stresses. A (0/90/0/90/0/90)s-laminate was produced with an average fibre volume fraction of 45.6% and a porosity of 15.9%. Dog-bone-type tensile specimens with a width of 10 mm were cut from the plate by water jet and tested at temperatures up to 1200°C in air. The tensile strength at room temperature measured 177.4 MPa and linearly decreased to 145.2 MPa at a temperature of 800°C. A stronger decrease occurred at 1000 and 1200°C. In contradiction to ceramic matrix composites manufactured by the CVI-route the stress–strain behaviour is nearly linear up to failure. The modulus of the composite (at room temperature 108.8 GPa) is analysed on the basis of the expected moduli of the fibres and the mullite matrix. It can be concluded that the contribution of the matrix to the modulus of the composite is low, caused by porosity and components other than mullite. The intralaminar shear strength at room temperature measured 36 MPa. This value reflecting shear transfer capability of fibre to matrix limits the amount of fibre pull-out.  相似文献   

3.
Jute fabrics/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 20–60 wt%. Composites were subjected to mechanical, thermal, water uptake and scanning electron microscopic (SEM) analysis. Composite contained 50 wt% jute showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the 50% jute content composites were found to be 85 MPa, 1.25 GPa, 140 MPa and 9 GPa and 9.5 kJ/m2, respectively. Water uptake properties at room temperature were evaluated and found that the composites had lower water uptake compared to virgin matrix.  相似文献   

4.
The microstructure and elevated temperature mechanical properties of continuous carbon fibre reinforced ZrC and TaC composites were investigated. Silicon carbide was added to both compositions to aid sintering during hot pressing. Fibres were homogeneously distributed and no fibre degradation was observed at the interface with the ceramic matrix even after testing at 2100 °C. The flexural strength increased from 260 to 300 MPa at room temperature to ∼450 MPa at 1500 °C, which was attributed to stress relaxation. At 1800 °C, the strength decreased to ∼410 MPa for both samples. At 2100 °C plastic deformation resulted in lower strength at the proportional limit (210–320 MPa), but relatively high ultimate strength (370–440 MPa). The sample containing ZrC had a lower ultimate strength, but higher failure strain at 2100 °C due to the weak fibre/matrix interface that resulted in fibre-dominated composite behaviour.  相似文献   

5.
Elastic constants and tensile behaviour of chemical vapour infiltration processed 2.5D Cf/SiC composites possessing multilayered (PyC/SiC)n=4 interphase, Si-B-C containing matrix and SiC seal-coating have been evaluated with microstructural examination and damage assessment. The strength obtained as ~187 ± 2 MPa in tensile tests at 27 °C is increased by ~18% and ~22% at 1000 °C and 1250 °C, respectively due to reduced thermal stress and increased strength of load-sharing C-fibres, which are protected from oxidation till failure by a self-healing borosilicate layer. The damage evolving during tension tests has been quantified by relating it to decrease of stress-strain slope with strain. Higher (6–8 times) elastic constants measured along fibre-axes than that obtained transversely, indicate significant anisotropy. Owing to matrix cracking with fibre-debonding and pull-out, the fibre-oriented elastic constants of tensile-fractured samples are significantly lower than those of as-received composites, and the difference scales with temperature, whereas negligible change is observed perpendicular to the fibre axes.  相似文献   

6.
With burgeoning environmental concerns worldwide, using natural fibers/fillers to produce composites rather than conventional fibers is on the rise. The current work focuses on the physical and thermomechanical characteristics of alkaline-treated jute filler-based epoxy composites. The composites have been prepared with different weight fraction of jute fillers (0%, 2.5%, 5%, 7.5%, 10%, and 12.5%) using hand layup process. The X-ray diffraction and Fourier transform infrared spectroscopy analysis observed that the alkali treatment of jute fillers improved the crystallinity and molecular structure, enhancing the interfacial and molecular bond between fillers and matrix. The mechanical characterizations of developed composites analyzed that the inclusion of treated jute fillers strengthened the tensile and flexural properties. The 5% filler-based composites have demonstrated maximum tensile strength (54.06 MPa) and modulus (3.12 GPa) with maximum flexural strength (67.55 MPa) and modulus (3.90 GPa). The viscoelastic characteristics of composites revealed that the 7.5% filler-based composite has the highest storage modulus (3.75 GPa), loss modulus (0.496 GPa), and glass transition temperature (91°C) due to greater interfacial interactions of molecules. The weight loss and degradation of composites analyzed with thermogravimetric analysis, and observed better thermal stability with treated jute fillers. The morphological analysis at fracture surfaces analyzed the brittle catastrophic failure of composites. Therefore, the finding produced better specific strength and stiffness with greater thermal stability for electronics equipment, packaging, and transportation.  相似文献   

7.
For the fabrication of complex, micro‐electromechanical systems (MEMS) devices based on low‐temperature co‐fired ceramic (LTCC), higher firing temperatures and longer times than those proposed by the LTCC producer are needed. These changes to the thermal budget may influence the material properties and consequently its functional properties. The effect of the firing conditions on the LTCC DuPont 951 and thus on the phase composition, that is, the alumina/anorthite ratio and porosity, on the mechanical properties is presented. The samples fired at low temperatures (800°C) had a high porosity (7%), which significantly contributed to the low elastic modulus (100 GPa) and the low mechanical strength of the LTCC (140 MPa). The samples fired at 850°C, which had only 1% of porosity, resulted in an elastic modulus of 122 GPa and a flexural strength of 224 MPa. A further increase in the temperature contributed to a slight decrease in the elastic modulus, while no significant difference in the flexural strength could be observed. The enhancement of the flexural strength with an increasing firing temperature was mainly related to a decrease in the porosity and to a lesser extent to the different ratio of the alumina/anorthite phases. The effect of firing time on the phase composition at selected temperatures (i.e., 100 h at 700 and 800°C) is also discussed.  相似文献   

8.
Oxide (Nextel? 440) fiber‐reinforced silica composites, with the density and porosity of 1.97 g/cm3 and 21.8%, were prepared through sol‐gel. Their average flexure strength, elastic modulus, shear strength, and fracture toughness at room temperature were 119.7 MPa, 25.6 GPa, 10.8 MPa, and 4.0 MPa·m1/2, respectively. The composites showed typical toughened fracture behavior, and distinct pullout fibers were observed at the fracture surface. Their mechanical properties were performant up to 1000°C, with the maximum flexural strength of 132.2 MPa at 900°C. Moreover, the composites showed good thermal stability, even after thermal aging and thermal shock at elevated temperatures.  相似文献   

9.
采用等温黏度实验和浇铸体力学性能测试来优选自制改性固化剂CUR–1的配比,通过不同升温速率下的固化过程差示扫描量热并对固化物进行傅立叶变换红外光谱分析,确定了体系的固化制度,研制出一种适用于发动机壳体或结构复杂的回转体类结构件的碳纤维湿法缠绕树脂基复合材料的中低温固化环氧树脂体系,用湿法缠绕工艺制作单向纤维缠绕成型复合材料环(NOL环)并进行了性能测试。结果表明:当CUR–1的含量为15份时,树脂体系具有适于湿法缠绕工艺的黏度和使用期,树脂可在80℃完全固化,同时浇铸体拉伸强度为84 MPa,拉伸弹性模量为3.8 GPa,断裂伸长率为5.4%,热变形温度为131℃。该树脂体系与纤维粘结性好,NOL环力学性能高,NOL环拉伸强度为2 451 MPa,拉伸弹性模量为146 GPa,层剪切强度为55 MPa。  相似文献   

10.
Graphene/leucite nanocomposites (rGO/leucite) were prepared through in situ reduction of graphene oxide/geopolymer (rGO/KGP) composites. The effects of rGO on the microstructure and mechanical properties with respect to the geopolymer matrix after the high‐temperature treatment were investigated systematically. The results show that GO is first partially reduced in the geopolymeric solution and then completely under the post high‐temperature treatment. The rGO sheets undergo no interfacial reactions with the matrix even after thermal treatment. The rGO/geopolymer composites fully transform to rGO/leucite composites after being treated at 1000°C for 30 min in an argon atmosphere. Significant improvements in mechanical properties were achieved through rGO reinforcement giving flexural strength, elastic modulus, and fracture toughness of 91.1 MPa, 60.5 GPa, and 2.04 MPa·m1/2, increased by 120%, 8%, and 1.5%, respectively, compared with the leucite matrix alone.  相似文献   

11.
There is a growing interest in the use of composite materials. Silk fiber/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 10–30 wt%. Composite containing 30 wt% silk showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength, hardness of the 30% silk content composites were found 54 MPa, 0.95 GPa, 75 MPa and 0.43 GPa and 5.4 kJ/m2, 95.5 Shore A, respectively. Water uptake properties at room temperature, accelerated weathering aging, irradiation, thermomechanical analysis, and degradation in soil were carried out in this experiment.  相似文献   

12.
Triglyceride oils derived from plants have been used to synthesize several different monomers for use in structural applications. These monomers have been found to form polymers with a wide range of physical properties. They exhibit tensile moduli in the 1–2 GPa range and glass transition temperatures in the range 70–120 °C, depending on the particular monomer and the resin composition. Composite materials were manufactured utilizing these resins and produced a variety of durable and strong materials. At low glass fiber content (35 wt %), composites produced from acrylated epoxidized soybean oil by resin transfer molding displayed a tensile modulus of 5.2 GPa, a flexural modulus of 9 GPa, a tensile strength of 129 MPa, and flexural strength of 206 MPa. At higher fiber contents (50 wt %) composites produced from acrylated epoxidized soybean oil displayed tensile and compression moduli of 24.8 GPa each, and tensile and compressive strengths of 463.2 and 302.6 MPa, respectively. In addition to glass fibers, natural fibers such as flax and hemp were used. Hemp composites of 20% fiber content displayed a tensile strength of 35 MPa and a tensile modulus of 4.4 GPa. The flexural modulus was ∼2.6 GPa and the flexural strength was in the range 35.7–51.3 MPa, depending on the test conditions. The flax composite materials had tensile and flexural strengths in the ranges 20–30 and 45–65 MPa, respectively. The properties exhibited by both the natural- and synthetic fiber-reinforced composites can be combined through the production of “hybrid” composites. These materials combine the low cost of natural fibers with the high performance of synthetic fibers. Their properties lie between those displayed by the all-glass and all-natural composites. Characterization of the polymer properties also presents opportunities for improvement through genetic engineering technology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 703–723, 2001  相似文献   

13.
采用热压工艺制造聚丙烯(PP)/甘蔗皮纤维复合材料,并研究其拉伸性能。研究热压温度为175℃、压力为2 MPa、时间15 min工艺条件下纤维粒径大小和质量分数对复合材料拉伸强度和拉伸弹性模量的影响。结果表明:在甘蔗皮纤维质量分数为40%条件下,复合材料拉伸性能随着粒径减小呈现先增加后减少的趋势,当纤维粒径为40~60目(0.45~0.3 mm)时材料拉伸强度最大,为8.58 MPa,此时弹性模量为2.44 GPa;在相同纤维粒径40~60目条件下,纤维质量分数为40%时PP复合材料拉伸强度最大,纤维质量分数为50%时PP复合材料拉伸弹性模量最大,达到2.65 GPa。根据实验结果,甘蔗皮纤维增强PP复合材料在纤维粒径为40~60目、质量分数在40%时综合拉伸性能最佳。  相似文献   

14.
The influence of carbon fibre content on the mechanical behaviour of HfC/SiC composites was investigated up to 2100 °C for specimens containing 40 or 55 vol% fibres. Silicon carbide was added as a sintering aid during hot pressing. Increasing the fibre content made infiltration more difficult, which resulted in higher porosity in the specimen with 55 vol% fibres. The room temperature flexural strength ranged from 340 to 380 MPa, and it increased to more than 400 MPa at 1800 °C due to stress relaxation. Increasing temperature was accompanied by a decrease in the slope of the load-displacement curve, indicating a decrease in elastic modulus, but plastic deformation was not observed below 2100 °C. At 2100 °C, the specimen containing a higher fibre content underwent significant deformation due to low interfacial strength between the fibre plies, retaining a strength at the proportional limit of 290 MPa and an ultimate strength of 520 MPa.  相似文献   

15.
A gripping system has been developed to test uniaxial, 0° orientation PMR 15/Celion 6000 composites at elevated temperatures. The method involves compression of grit-blasted laminate between grit-blasted metal to give a non-slipping interface for load transfer. Tensile testing at both 316°C and room temperature indicated that deformation was elastic to fracture and that the variation in tensile properties for one laminate is the same as that for several panels. In addition, the tensile properties for uniaxial PMR 15/Celion 6000 are identical at 316°C and room temperature. For nominally 51 volume percent fiber, the elastic modulus is 119.6 GPa, the fracture stress is 1370 MPa, and the strain to fracture is about 1.15 percent. In addition, data are presented which indicate that the gripping system can be used for long term, elevated temperature testing of composite materials.  相似文献   

16.
Jute fabric-reinforced poly(caprolactone) biocomposites (30–70% jute) were fabricated by compression molding. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the non-irradiated composites (50% jute) were found to be 65 MPa, 0.75 GPa, 75 MPa, 4.2 GPa and 6.8 kJ/m2, respectively. The composites were irradiated with gamma radiation at different doses (50–1000 krad) at a dose rate of 232 krad/hr and mechanical properties were investigated. The irradiated composites containing 50% jute showed improved physico-mechanical properties. The degradation properties of the composites were observed. The morphology was evaluated by scanning electron microscope.  相似文献   

17.
Dicumyl peroxide (DCP) initiated reactive compatibilization of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV)/miscanthus fibers (70/30 wt %) based biocomposite was prepared in a twin screw extruder followed by injection molding. In the presence of DCP, both the flexural and the tensile strength of the PHBV/miscanthus composites were appreciably higher compared with PHBV/miscanthus composite without DCP as well as neat PHBV. The maximum tensile strength (29 MPa) and flexural strength (51 MPa) were observed in the PHBV/miscanthus composite with 0.7 phr DCP. The enhanced flexural and tensile strength of the PHBV/miscanthus/DCP composites are attributed to the improved interfacial adhesion by free radical initiator. Unlike flexural and tensile strength, the modulus of the PHBV/miscanthus/DCP composites was found to slightly lower than the PHBV/miscanthus composite. The modulus difference in the PHBV/miscanthus composite with and without DCP has good agreement with the observed crystallinity. However, the flexural and tensile modulus of all the prepared biocomposites was at least two fold higher than the neat PHBV. The storage modulus value of the PHBV/miscanthus and PHBV/miscanthus/DCP biocomposites follows similar trend like tensile and flexural modulus. The melting temperature and crystallization temperature of PHBV/DCP and PHBV/miscanthus/DCP samples were considerably lower compared with the neat PHBV and PHBV/miscanthus composites. The surface morphology revealed that the PHBV/miscanthus/DCP composites have good interface with less fiber pull‐outs compared with the corresponding counterpart without DCP. This suggests that the compatibility between the matrix and the fibers is enhanced after the addition of peroxide initiator. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44860.  相似文献   

18.
Natural fiber composites are known to have lower mechanical properties than glass or carbon fiber reinforced composites. The hybrid natural fiber composites prepared in this study have relatively good mechanical properties. Different combinations of woven and non‐woven flax fibers were used. The stacking sequence of the fibers was in different orientations, such as 0°, +45°, and 90°. The composites manufactured had good mechanical properties. A tensile strength of about 119 MPa and Young's modulus of about 14 GPa was achieved, with flexural strength and modulus of about 201 MPa and 24 GPa, respectively. For the purposes of comparison, composites were made with a combination of woven fabrics and glass fibers. One ply of a glass fiber mat was sandwiched in the mid‐plane and this increased the tensile strength considerably to 168 MPa. Dynamic mechanical analysis was performed in order to determine the storage and loss modulus and the glass transition temperature of the composites. Microstructural analysis was done with scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
As a new biobased epoxy resin system, epoxidized soybean oil (ESO) was cured with tannic acid (TA) under various conditions. When the curing conditions were optimized for the improvement of the thermal and mechanical properties, the most balanced properties were obtained when the system was cured at 210°C for 2 h at an epoxy/hydroxyl ratio of 1.0/1.4. The tensile strength and modulus and tan δ peak temperature measured by dynamic mechanical analysis for the ESO–TA cured under the optimized condition were 15.1 MPa, 458 MPa, and 58°C, respectively. Next, we prepared biocomposites of ESO, TA, and microfibrillated cellulose (MFC) with MFC contents from 5 to 11 wt % by mixing an ethanol solution of ESO and TA with MFC and subsequently drying and curing the composites under the optimized conditions. The ESO–TA–MFC composites showed the highest tan δ peak temperature (61°C) and tensile strength (26.3 MPa) at an MFC content of 9 wt %. The tensile modulus of the composites increased with increasing MFC content and reached 1.33 GPa at an MFC content of 11 wt %. Scanning electron microscopy observation revealed that MFC was homogeneously distributed in the matrix for the composite with an MFC content of 9 wt %, whereas some aggregated MFC was observed in the composite with 11 wt % MFC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Strong and Tough Hi-Nicalon-Fiber-Reinforced Celsian-Matrix Composites   总被引:1,自引:0,他引:1  
Strong, tough, and almost fully dense BN/SiC-coated Hi-Nicalon-fiber-reinforced celsian-matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having ˜42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of stress and strain at the proportional limit were 435 ± 35 MPa and 0.27 ± 0.01%, respectively, and an apparent ultimate strength of 900 ± 60 MPa was observed. Young's modulus of the composites was 165 ± 5 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号