首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C/C-SiC composites were fabricated by a combined process of chemical vapor deposition (CVD), slurry infiltration(SI), and precursor infiltration and pyrolysis (PIP). The microstructure and mechanical behavior were investigated for the dense C/C-SiC composites before and after high-temperature heat treatment. The results indicated that the sintering of the SiC matrix and the migration of the SiC matrix/fiber bundles weak interface occurred after high-temperature heat treatment at 1900 ℃. The SiC sintering resulted in an increase in the flexural strength of the C/C-SiC composites from 298.9 ± 35.0 MPa to 411.1 ± 57.3 MPa. The migration of the weak interface changed the direction of crack propagation, making the fracture toughness of the C/C-SiC composites decrease from 13.3 ± 1.7 MPa⋅m 1/2 to 9.02 ± 1.5 MPa⋅m 1/2.  相似文献   

2.
3.
《Ceramics International》2023,49(18):29391-29399
C/C-ZrC-SiC composites were prepared by chemical vapor infiltration (CVI) and molten salt assisted reactive melt infiltration (RMI). The microstructure of low density and high density C/C composites without graphitization (LC/HC) and graphitization at 2000 °C (LCG/HCG) were compared. Moreover, the effects of graphitization of LC and HC on the microstructure and flexural strength of C/C-ZrC-SiC composites were investigated in detail. The composites prepared by infiltration of LC and LCG had lower flexural strength, 220.01 ± 21.18 MPa and 197.94 ± 19.05 MPa, respectively. However, the composites prepared by HC and HCG presented higher flexural strength, 308.76 ± 12.35 MPa and 289.62 ± 8.70 MPa, respectively. This was due to the phenomenon of fiber erosion in both LC and LCG during the RMI process. After graphitization, the flexural strength of C/C-ZrC-SiC composites prepared by RMI decreased, but the fracture behavior of the composites tends to be more mild. The decreased strength of the composites were caused by the increased matrix cracks, fiber damage in high temperature and the weak interfacial bonding. The improve of failure behavior of the composites was due to interface debonding between the fiber and matrix, and composites can consume the fracture energy through fiber pull-out.  相似文献   

4.
One-dimensional (1D) hafnium carbide nanowires (HfCnws) were grown in situ on carbon fibers (CFs) via a Ni-assisted pyrolysis method of organometallic polymer precursor. Scanning electron microscopy (SEM), transmission electron microscope (TEM), polarized-light optical microscopy (PLM), and Raman were used to analyze the effect of HfCnws on the microstructure of pyrolytic carbon (PyC). The specific heat capacity (HC), thermal diffusivity (TD), thermal conductivity (TC), and coefficient of thermal expansion (CTE) of HfCnws-C/C composites were also investigated. Results show that HfCnws wrapped by carbon nanosheet were successfully synthesized. The diameter of HfCnws is about 30 nm and the thickness of carbon nanosheet is about 10 nm, which could induce the formation of isotropic (ISO) PyC. After introducing HfCnws, the TD and CTE of HfCnws-C/C composites were increased. Ni2HfCnws-C/C composites show a higher TC and TD, and the CTE increased with the increasing content of HfCnws.  相似文献   

5.
The electrical properties of carbon/carbon (C/C) and carbon/carbon-silicon carbide (C/C-SiC) ceramic composites were measured. The results show that the capacitance decreases rapidly with an increase in frequency and it becomes constant above a frequency of 500 kHz, whereas the dissipation factor increases with increasing frequency. C/C-SiC composites give higher value than C/C composites due to the presence of microcracks.  相似文献   

6.
Friction and wear properties of carbon/carbon (C/C) composites with a smooth laminar (SL), a medium textured rough laminar (RL) and a high textured RL pyrolytic carbon texture were investigated with a home-made laboratory scale dynamometer to simulate airplane normal landing (NL), over landing (OL) and rejected take-off (RTO) conditions. The morphology of worn surfaces at different braking levels was observed with scanning electron microscopy. The results show that C/C composites with RL have nearly constant friction coefficients, stable friction curves and proper wear loss at different braking levels, while friction coefficients of C/C composites with SL pyrolytic carbon decrease intensely and their oxidation losses increase greatly under OL and RTO conditions. Therefore, C/C composites with a high and medium textured RL pyrolytic carbon may satisfy the requirements of aircraft brakes. The good friction and wear properties of C/C composites with RL are due to the properties of RL, which leads to a uniform friction film forming on the friction surface.  相似文献   

7.
Due to the favorable self-healing performance, hexagonal boron nitride (h-BN) as additive in the matrix can significantly influence the oxidation behavior and the kinetic characteristics of C/C-SiC composites. In this work, C/C-SiC composites modified by h-BN (C/C-BN-SiC) were prepared by low-temperature compression molding (LTCM), pyrolysis and liquid silicon infiltration (LSI). Microstructure, oxidation behavior and kinetic characteristics of the C/C-BN-SiC composites were investigated compared with the C/C-SiC composite. Because h-BN is non-wetted by liquid silicon, the h-BN flakes in the matrix can obstruct and prolong the flow path of silicon, and protect the carbon fibers from corrosion to a certain extent. The oxidation kinetics of composites occur in low and high temperature domains, with different oxidation-controlling mechanisms, and the addition of h-BN can hinder the inward diffusion and lead to the decline of carbon recession and apparent activation energy.  相似文献   

8.
Carbon/carbon (C/C) composites have a wide application as the thermal structure materials because of their excellent properties at high temperatures. However, C/C composites are easily oxidized in oxygen-containing environment, which limits their potential applications to a great degree. Silicon carbide (SiC) ceramic coating fabricated via pack cementation (PC) was considered as an effective way to protect C/C composites against oxidation. But the mechanical properties of C/C composites were severely damaged due to chemical reaction between the molten silicon and C/C substrate during the preparation of SiC coating by PC. In order to eliminate the siliconization erosion, a pyrolytic carbon (PyC) coating was pre-prepared on C/C composites by the chemical vapor infiltration (CVI) prior to the fabrication of SiC coating. Due to the retardation effect of PyC coating on siliconization erosion, the flexural strength retention of the SiC coated C/C composites with PyC coating increased from 46.27 % to 107.95 % compared with the specimen without PyC coating. Furthermore, the presence of homogeneous and defect-free PyC coating was beneficial to fabricate a compact SiC coating without silicon phase by sufficiently reacting with molten silicon during PC. Therefore, the SiC coated C/C composites with PyC coating had better oxidation resistances under dynamic (between room temperature and 1773 K) and static conditions in air at different temperatures (1773?1973 K).  相似文献   

9.
10.
乔志军 《天津化工》2011,25(3):1-2,7
本文综述了碳/碳复合材料力学性能的研究进展,包括碳纤维、基体炭、界面性能、制备工艺及工艺参数等对碳/碳复合材料力学性能的影响。同时简单介绍了当今单向碳/碳复合材料力学性能的表征手段。希望对碳/碳复合材料力学性能的研究及应用提供帮助。  相似文献   

11.
FeSi2 modified C/C-SiC composites (C/C-SiC-FeSi2) are fabricated by chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI) with FeSi75 alloy. The effects of high-temperature annealing (1600?°C, 1650?°C, 1700?°C) on the microstructure and performance of C/C-SiC-FeSi2 are investigated. With the elevation of annealing temperature, the porosity of the composites and the content of SiC increase due to the evaporation of liquid Si and the further reaction of Si and C. The mechanical performance gradually decreases due to the catalytic graphitization of the carbon fiber, the high porosity and the thermal residual stress (TRS) caused by thermal mismatch of different phases. The coefficient of thermal expansion and thermal diffusivity slightly decrease with increasing annealing temperature for the increase of porosity. However, the friction performance of the heat treated materials at high braking speed are greatly improved attributing to the increase of SiC content and the capturing and storage function of pores on hard particles.  相似文献   

12.
For the production of C/C-SiC brake discs via the liquid silicon infiltration method (LSI), the hot pressing process is the state of art technique for the moulding of the CFRP composites. This technique consists of several manual steps which increase production cost. The overall cost can be reduced by implementing injection moulding process.In this paper the influence of the moulding process (hot pressing, injection moulding) on the properties of semi-finished and final products during the production of short-fibre-reinforced C/C-SiC composites by means of the LSI process are examined. The starting polymer is chemically characterised. Carbon-fibre-reinforced plastic (CFRP) composites are fabricated by hot pressing, as well as injection moulding process. The CFRP composites are converted into porous C/C composites by pyrolysis. Liquid silicon is infiltrated to form dense C/C-SiC composites, which are further investigated during the course of this paper. Significant differences in properties of the composites are discussed.  相似文献   

13.
《Ceramics International》2022,48(3):3762-3770
Cf/Hf0.5Zr0.5C-SiC composites were prepared by introducing Hf0.5Zr0.5C matrix (11 cycles) and SiC matrix (9 cycles) into the carbon cloth preform through precursor impregnation and pyrolysis (PIP) process. The influence of the introduction time of SiC matrix on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC composites was studied, and the results show that with the increase of the PIP cycles of the SiC matrix introduced before Hf0.5Zr0.5C matrix, the composite open porosity decreased, and the flexural strength and modulus presented an obvious upward trend. CS45 sample, which has 4 cycles of PIP SiC introduced in advance, has the highest flexural strength, flexural modulus and interfacial shear strength of 402.73 ± 35.73 MPa, 56.92 ± 3.97 GPa and 100.88 ± 7.79 MPa, respectively. Hf0.5Zr0.5C matrix has a loose and porous structure, so when more SiC matrix was introduced in advance, its covering effect on the surface of fibers led to less intra-bundle pores and thusly denser composite structure, and due to the compactness of SiC matrix, better overall bonding of fiber, interface and matrix was achieved, as well as better load transfer effect, which led to obvious interfacial debonding and cracking based on the in-situ SEM observation during flexural tests. While in the sample without pre-introduced SiC, the cracking occurred mainly between the interface and porous matrix and the overall performance of the material was poor.  相似文献   

14.
In order to apply carbon/carbon composites (C/Cs) to various hot structures, secondary bonding techniques effective at elevated temperatures are frequently required. In the present study, carbon bonding between lamination type C/Cs was formed by the carbonation of polymer adhesive, and the strength of the bonding was evaluated at temperatures up to 2273 K in a vacuum using the double-notched shear method. The results revealed that bonding strength increased with increasing temperature and became higher than the inter-laminar shear strength of the substrate C/C when the bonding layer was thin. The enhancement of carbon bonding strength with increasing temperature was shown to be caused mainly by the evaporation of absorbed gases, probably water, up to temperatures of 1800 K with a slight additional contribution of thermal residual stress. It was also shown that heat treatment at higher temperatures made the bonding stronger.  相似文献   

15.
《Ceramics International》2020,46(10):16142-16150
Hafnium carbide nanowires (HfCnws) were in-situ grown in carbon/carbon (C/C) composites, and subsquently the preforms were densified by isothermal chemical vapor infiltration to obtain HfCnws modified carbon/carbon (HfCnws-C/C) composites. Morphology and microstructure of HfCnws were examined, and the effect of HfCnws on the mechanical property and ablation resistance of C/C composites were also investigated. Results show that introducing HfCnws refined the grain size of pyrolytic carbon (PyC). The out-of-plane compression, interlaminar shear and flexual strength of HfCnws-C/C composites increased by 120.80%, 45.60% and 94.65%, respectively compared with pure C/C, and the HfCnws-C/C shows good ablation resistance under oxy-acetylene flame ablation.  相似文献   

16.
Ruiying Luo  Xiulan Huai  Haiying Ding 《Carbon》2003,41(14):2693-2701
The effect of high temperature heat treatment on the tribological behavior of carbon/carbon (C/C) composites has been investigated. C/C composite preforms were made from 1K PAN plain carbon cloth, and densified using rapid directional diffusion (RDD) CVI processes. Four specimens treated at 1800, 1800+2000, 2000, and 2300 °C, respectively, were prepared. A ring-on-ring specimen configuration was used to simulate aircraft brakes. The brake initial angular velocity ranged from 1800 to 7500 rpm (6.2-26.0 m s−1 average linear sliding velocity). The specific pressure and moment of inertia were 392-784 kPa and 0.25-0.31 kg m2, respectively (1.9-42.3 MJ m−2 kinetic energy loading per unit friction surface area). The results showed that the stability of the brake moment-time curves increased with increasing heat treatment temperature (HTT) for the four composites, and those treated at 2300 °C possessed the lowest initial brake moment peak ratio values (from 1.1 to 1.3). The high degree of graphitization and low shear forces of the matrix carbon resulting from the high HTT could allow friction films to develop and reduce those values under the present brake conditions. The friction coefficients of four RDD CVI C/C composites decreased with an increase in specific pressure. The resulting changes in the friction coefficient of the four composites due to the specific pressure changes have basically nothing to do with the interface temperature under those conditions. According to the practical brake conditions, the friction properties of RDD CVD C/C composites could be improved by regulating the structure of the brake discs, changing the specific pressure exerted on the discs and the heat treatment. The linear wear rates of the four materials increased with increasing HTT. The composites treated at 2000 °C had both high enough friction coefficients and the lower linear wear rates. The different heat treatment methods at 2000 °C had no obvious effect on the friction and wear properties of RDD CVI C/C composites.  相似文献   

17.
The paper presents experimental characterization and theoretical predictions of elastic and failure properties of continuous carbon fiber reinforced silicon carbide (C/C-SiC) composite fabricated by Liquid Silicon Infiltration (LSI). Its mechanical properties were determined under uniaxial tensile, compression, and pure shear loads in two sets of principal coordinate systems, 0°–90° and ±45°, respectively. The properties measured in the 0°–90° coordinate system were employed as the input data to predict their counterparts in the ±45° coordinate system. Through coordinate transformations of stress and strain tensors, the elastic constants and stress-strain behaviors were predicted and found to be in good agreement with the experimental results. In the same way, three different failure criteria, maximum stress, Tsai-Wu, and maximum strain, have been selected for the evaluation of the failure of C/C-SiC as a type of genuinely orthotropic material. Based on the comparisons with experimental results, supported by necessary practical justifications, the Tsai-Wu criterion was found to offer a reasonable prediction of the strengths, which can be assisted by the maximum stress criterion to obtain an indicative prediction of the respective failure modes.  相似文献   

18.
Carbon fibre reinforced carbon and silicon carbide dual matrix composites are a commercially produced using the liquid silicon infiltration (LSI) process. In comparison to the state of the art LSI process, the first production step—the shaping of the carbon fibre reinforced plastic green body—is realised through thermoset injection moulding. Using this method, the complete process can be automated. Simultaneously, the injection moulding technology allows complex geometries with near net shape in short cycle times of about two to five minutes. Thereby, this large-scale process offers a wide range of shot weights from a few mg up to 100?kg, also in multi-component technology. Also, several manufacturing steps can be omitted. This improves the reproducibility, and working in closed environments improves the employees’ health protection. Further process steps, like pyrolysis and silicon infiltration follow the state of the art. Although, this promising approach significantly shortens the fibres, the defined plastic processing is highly reproducible and generates similar mechanical properties like manual processes, due to the better fibre/matrix interaction in the plastic composite. In addition, continuous fibre preforms can be inserted to fulfil higher requirements.  相似文献   

19.
Carbon/carbon (C/C) composites with addition of hafnium carbide (HfC) were prepared by immersing the carbon felt in a hafnium oxychloride aqueous solution, followed by densification and graphitization. Mechanical properties, coefficients of thermal expansion (CTE), and thermal conductivity of the composites were investigated. Results show that mechanical properties of the composites decrease dramatically when the HfC content is greater than 6.5 wt%. CTE of the composites increases with the increase of HfC contents. The composites with addition of 6.5 wt% HfC show the highest thermal conductivity. The high thermal conductivity results from the thermal motion of CO in the gaps and pores, which can improve phonon–defect interaction of the C/C composites. Thermal conductivities of the composites decrease when the HfC content is greater than 6.5 wt%, which is due to formation of a large number of cracks in the composites. Cracks increase the phonon scattering and hence restrain heat transport, which results in the decrease of thermal conductivity of the composites.  相似文献   

20.
Due to their exceptional and distinctive qualities, 3D C/C-SiC composites are widely utilized in producing high-end equipment and the aerospace national defense industries. However, the hard and pseudo plastic nature of the material and its anisotropies make it challenging to process. To improve the processing quality of 3D C/C-SiC composites, laser-assisted precision grinding technology is introduced in this paper, which innovatively controls the depth of the thermally induced damage layer by adjusting the laser process parameters to reduce the hard brittleness of the material, and then the surface is created by precision grinding with a grinding wheel on this basis. Experiments on laser-induced damage, laser-assisted grinding, and diamond scratching were carried out to investigate the effect of laser parameters on material damage and the effect of laser-assisted grinding processes, with an emphasis on revealing the mechanism of material removal. The results show that laser irradiation causes complex reactions such as sublimation, decomposition, and oxidation of 3D C/C-SiC composites, resulting in SiO2 and Si and recondensed SiC, causing surface/subsurface damage. A maximum reduction in normal grinding force, tangential grinding force, specific grinding energy, and surface roughness of 35.6%, 43.6%, 43.58%, and 24.22%, respectively, compared to conventional grinding processes with laser-assisted grinding. After laser irradiation, the degree of brittle fracture in the precision grinding of workpieces is significantly reduced due to the degradation of matrix and fiber damage caused by laser irradiation, which reduces the hard and pseudo plastic properties of the material. The removal mechanism shows a trend of ductile domain removal in the grinding of thermally damaged layers, which reduces the grinding force and improves the surface quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号